special column

IGBT life prediction method driven by model and data

  • Guishuang TIAN ,
  • Shaoping WANG ,
  • Jian SHI ,
  • Mo TAO
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.State Key Laboratory of Marine Thermal Energy and Power,Wuhan 430205,China
    3.Wuhan Second Ship Design and Research Institute,Wuhan 430205,China

Received date: 2024-01-17

  Revised date: 2024-01-29

  Accepted date: 2024-02-28

  Online published: 2024-04-19

Supported by

Beijing Natural Science Foundation(L221008);Open Fund of Science and Technology on Thermal Energy and Power Laboratory(TPL2022C02)

Abstract

As a key module of aviation inverter, Insulated Gate Bipolar Transistor (IGBT) plays a decisive role in its safety and reliability. Considering the complex operating conditions of aviation inverter and the fact that IGBT is one of the most vulnerable components for failure, this paper analyzes the failure mechanism and key characteristic parameters of IGBT in aviation inverter. Based on this, an IGBT life prediction method is proposed by combing Long Short-Term Memory (LSTM) network with physical analytical model. The relationship is established for IGBT between its state monitoring data and junction temperature, and the cumulative damage of IGBT is obtained from the physical model, so as to achieve the real-time life prediction of IGBT. Finally, the IGBT accelerated aging experimental dataset provided by the NASA PCoE Center is applied to validate the prediction model. The corresponding results show that the LSTM network combined with the cumulative damage model can effectively predict the lifespan of IGBT, thereby contributing to improving the reliability and reducing the daily maintenance cost of aviation inverters.

Cite this article

Guishuang TIAN , Shaoping WANG , Jian SHI , Mo TAO . IGBT life prediction method driven by model and data[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 630173 -630173 . DOI: 10.7527/S1000-6893.2024.30173

References

1 黄湛钧, 董鑫, 卢沐宇, 等. 基于DRSN与电压幅值分析的航空HVDC系统逆变器故障诊断[J]. 航空学报202445(3): 328685.
  HUANG Z J, DONG X, LU M Y, et al. Fault diagnosis of inverter of aviation HVDC system based on DRSN and voltage amplitude analysis[J]. Acta Aeronautica et Astronautica Sinica202445(3): 328685 (in Chinese).
2 邱立军, 吴明辉. PHM技术框架及其关键技术综述[J]. 国外电子测量技术201837(2): 10-15.
  QIU L J, WU M H. Review on the framework and key technology of PHM[J]. Foreign Electronic Measurement Technology201837(2): 10-15 (in Chinese).
3 左景航, 王友仁, 王景霖, 等. 变工况下航空逆变器健康评估方法研究[J]. 电子测量技术202245(6): 30-35.
  ZUO J H, WANG Y R, WANG J L, et al. Research on health evaluation method of aviation inverter under variable working conditions[J]. Electronic Measurement Technology202245(6): 30-35 (in Chinese).
4 HE Q C, CHEN W H, PAN J, et al. A prognostic method for predicting failure of dc/dc converter[J]. Microelectronics Reliability201774: 27-33.
5 AL-MOHAMAD A, HOBLOS G, PUIG V. A hybrid system-level prognostics approach with online RUL forecasting for electronics-rich systems with unknown degradation behaviors[J]. Microelectronics Reliability2020111: 113676.
6 ABUELNAGA A, NARIMANI M, BAHMAN A S. A review on IGBT module failure modes and lifetime testing[J]. IEEE Access20219: 9643-9663.
7 CZERNY B, LEDERER M, NAGL B, et al. Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions[J]. Microelectronics Reliability201252(9-10): 2353-2357.
8 WANG C L, TIAN Q H, YANG W H, et al. Analysis of characteristics of high voltage IGBT under low temperature[C]∥ 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). Piscataway: IEEE Press, 2019: 1-3.
9 陈华坤, 章卫国, 史静平, 等. 航空电子设备故障预测特征参数提取方法研究[J]. 西北工业大学学报201735(3): 364-373.
  CHEN H K, ZHANG W G, SHI J P, et al. Research on feature extraction method for fault prediction of avionics[J]. Journal of Northwestern Polytechnical University201735(3): 364-373 (in Chinese).
10 孔梅娟, 李志刚, 赵旺旺. IGBT键合线脱落故障特征分析[J]. 电工电能新技术201837(10): 87-92.
  KONG M J, LI Z G, ZHAO W W. Analysis of fault characteristics of IGBT bonding wire lift off[J]. Advanced Technology of Electrical Engineering and Energy201837(10): 87-92 (in Chinese).
11 陈民铀, 陈一高, 高兵, 等. 考虑老化进程对热参数影响的IGBT模块寿命评估[J]. 中国电机工程学报201737(18): 5427-5436, 5542.
  CHEN M Y, CHEN Y G, GAO B, et al. Lifetime estimation of IGBT module considering influence of aging process on thermal parameters[J]. Proceedings of the CSEE201737(18): 5427-5436, 5542 (in Chinese).
12 刘嘉诚. 基于机器学习算法的IGBT寿命预测研究[D]. 合肥: 合肥工业大学, 2020.
  LIU J C. IGBT life prediction based on machine learning algorithm[D].Hefei: Hefei University of Technology, 2020 (in Chinese).
13 郭子庆, 王学华. 基于神经网络的IGBT模块剩余使用寿命预测模型[J]. 电测与仪表202360(1): 132-138.
  GUO Z Q, WANG X H. Prediction model of neural network-based IGBT module remaining service life[J]. Electrical Measurement & Instrumentation202360(1): 132-138 (in Chinese).
14 GANGSAR P, TIWARI R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review[J]. Mechanical Systems and Signal Processing2020144: 106908.
15 XU Z Y, SALEH J H. Machine learning for reliability engineering and safety applications: Review of current status and future opportunities[J]. Reliability Engineering & System Safety2021211: 107530.
16 ZHANG J L, HU J B, YOU H L, et al. Characterization method of IGBT comprehensive health index based on online status data[J]. Microelectronics Reliability2021116: 114023.
17 FANG X C, LIN S, HUANG X J, et al. A review of data-driven prognostic for IGBT remaining useful life[J]. Chinese Journal of Electrical Engineering20184(3): 73-79.
18 LAI W, CHEN M Y, RAN L, et al. Study on lifetime prediction considering fatigue accumulative effect for die-attach solder layer in an IGBT module[J]. IEEJ Transactions on Electrical and Electronic Engineering201813(4): 613-621.
19 肖飞, 罗毅飞, 刘宾礼, 等. 焊料层空洞对IGBT器件热稳定性的影响[J]. 高电压技术201844(5): 1499-1506.
  XIAO F, LUO Y F, LIU B L, et al. Influence of voids in solder layer on the temperature stability of IGBTs[J]. High Voltage Engineering201844(5): 1499-1506 (in Chinese).
20 AHSAN M, STOYANOV S, BAILEY C. Data driven prognostics for predicting remaining useful life of IGBT[C]∥ 2016 39th International Spring Seminar on Electronics Technology (ISSE). Piscataway: IEEE Press, 2016: 273-278.
21 ISMAIL A, SAIDI L, SAYADI M, et al. Gaussian process regression remaining useful lifetime prediction of thermally aged power IGBT[C]∥ IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2019: 6004-6009.
22 LI W P, WANG B X, LIU J C, et al. IGBT aging monitoring and remaining lifetime prediction based on long short-term memory (LSTM) networks[J]. Microelectronics Reliability2020114: 113902.
23 高伟, 张琼洁, 李长留, 等. 基于LSTM网络的牵引变流器IGBT故障预测方法研究[J]. 电子器件202043(4): 804-808.
  GAO W, ZHANG Q J, LI C L, et al. A fault prediction method of IGBT in traction converter based on LSTM[J]. Chinese Journal of Electron Devices202043(4): 804-808 (in Chinese).
24 刘宾礼, 刘德志, 唐勇, 等. 基于加速寿命试验的IGBT模块寿命预测和失效分析[J]. 江苏大学学报(自然科学版)201334(5): 556-563.
  LIU B L, LIU D Z, TANG Y, et al. Lifetime prediction and failure analysis of IGBT module based on accelerated lifetime test[J]. Journal of Jiangsu University (Natural Science Edition)201334(5): 556-563 (in Chinese).
25 PATIL N, CELAYA J, DAS D, et al. Precursor parameter identification for insulated gate bipolar transistor (IGBT) prognostics[J]. IEEE Transactions on Reliability200958(2): 271-276.
26 SHI Y M, LIU J Q, AI Y, et al. Lifetime prediction method of the traction converter IGBT based on plastic strain energy density[J]. IEEE Transactions on Transportation Electrification202410(1): 1286-1298.
27 YANG L, AGYAKWA P A, JOHNSON C M. Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules[J]. IEEE Transactions on Device and Materials Reliability201313(1): 9-17.
28 CELAYA J, PHIL W, GOEBEL K. IGBT accelerated aging data set[Z]. 2009.
Outlines

/