Fluid Mechanics and Flight Mechanics

Influence of wall temperature on receptivity of hypersonic flare cone boundary layer

  • Dingjin ZHANG ,
  • Juanmian LEI ,
  • Rui ZHAO
Expand
  • School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100083,China
E-mail: zr8800@126.com

Received date: 2024-02-18

  Revised date: 2024-03-26

  Accepted date: 2024-04-02

  Online published: 2024-04-10

Supported by

National Natural Science Foundation of China(12272049)

Abstract

The receptivity process of external disturbances entering the boundary layer is crucial for predicting the transition location. Employing a combination of direct numerical simulation and linear stability analysis methods, this study investigates the influence of wall temperature on the receptivity of freestream Gaussian disturbances exciting disturbances within the flare cone boundary layer at Mach number 6. The findings indicate that Gaussian disturbances after passing through the shockwave excite fast acoustic waves and entropy waves at the head of the cone, with the amplitude of the fast acoustic waves being maximized. Additionally, the amplitude of fast acoustic waves increases with the increase of the wall temperature. Subsequently, the fast acoustic waves initiate the fast modal behavior within the boundary layer, and then excite the Mack second mode through a modal transformation mechanism. Decreasing wall temperature stabilizes the first mode, but renders the Mack second mode more unstably. Finally, Fourier transforms applied to the results of direct numerical simulations reveal a pattern of variation of receptivity coefficients with wall temperature, indicating that receptivity coefficients increase with the rise of wall temperature.

Cite this article

Dingjin ZHANG , Juanmian LEI , Rui ZHAO . Influence of wall temperature on receptivity of hypersonic flare cone boundary layer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(24) : 130290 -130290 . DOI: 10.7527/S1000-6893.2024.30290

References

1 ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics201244(1): 527-561.
2 陈猛, 刘汝盟, 王立峰, 等. 国家自然科学基金新增代码 “航空航天力学”内涵及重要研究领域[J].航空学报202445(2): 129947.
  CHEN M, LIU R M, WANG L F, et al. Connotation and key research areas of new application code “Aerospace Mechanics” of the National Natural Science Foundation of China[J]. Acta Aeronautica et Astronautica Sinica202445(2): 129947 (in Chinese).
3 王宇天, 刘建新, 王晓坤, 等. 多孔壁面对高速边界层最优增长条带二次失稳的影响规律[J]. 航空学报202344(22): 128519.
  WANG Y T, LIU J X, WANG X K, et al. Effects of porous wall on secondary instability of optimal growth streaks in high speed boundary layers[J]. Acta Aeronautica et Astronautica Sinica202344(22): 128519 (in Chinese).
4 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京: 科学出版社, 2015.
  ZHOU H, SU C H, ZHANG Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layer[M]. Beijing: Science Press, 2015 (in Chinese).
5 孔维萱, 张辉, 阎超. 适用于高超声速边界层的转捩准则预测方法[J]. 导弹与航天运载技术2013(5): 54-58.
  KONG W X, ZHANG H, YAN C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles2013(5): 54-58 (in Chinese).
6 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报201637(4): 1092-1102.
  ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica201637(4): 1092-1102 (in Chinese).
7 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展200737(3): 409-416.
  FU S, WANG L. Progress in turbulence/transition modelling[J]. Advances in Mechanics200737(3): 409-416 (in Chinese).
8 张雯, 刘沛清, 郭昊, 等. 湍流转捩工程预报方法研究进展综述[J]. 实验流体力学201428(6): 1-12, 38.
  ZHANG W, LIU P Q, GUO H, et al. Review of transition prediction methods[J]. Journal of Experiments in Fluid Mechanics201428(6): 1-12, 38 (in Chinese).
9 刘清扬,雷娟棉,刘周,等. 适用于可压缩流动的γ-Reθt -fRe 转捩模型[J]. 航空学报202243(8): 125794.
  LIU Q Y, LEI J M, LIU Z, et al. γ-Reθt -fRe transition model for compressible flow[J]. 202243(8): 125794 (in Chinese).
10 苏彩虹. 高超声速边界层转捩预测中的关键科学问题: 感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报202038(2): 355-367.
  SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction: receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica202038(2): 355-367 (in Chinese).
11 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报201536(1): 357-372.
  LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica201536(1): 357-372 (in Chinese).
12 FEDOROV A V, KHOKHLOV A P. Receptivity of hypersonic boundary layer to wall disturbances[J]. Theoretical and Computational Fluid Dynamics200215(4): 231-254.
13 李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报202445(2): 128627.
  LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica202445(2): 128627 (in Chinese).
14 杨鹏, 唐志共, 陈坚强, 等. 高超声速有攻角锥飞行工况下迎风面波包的演化[J]. 航空学报202142(S1): 726367.
  YANG P, TANG Z G, CHENG J Q, et al. Temporal evolution of wavepackets on the windward side of an inclined hypersonic cone under a flight condition[J]. Acta Aeronautica et Astronautica Sinica. 202142(S1): 726367 (in Chinese).
15 MA Y B, ZHONG X L. Receptivity of supersonic boundary layer over a flat plate[C]?∥?41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 788.
16 FEDOROV A V. Receptivity of a high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics2003491: 101-129.
17 MASLOV A A, SHIPLYUK A N, SIDORENKO A A, et al. Leading-edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics2001426(1): 73-94.
18 KARA K, BALAKUMAR P, KANDIL O. Effects of wall cooling on hypersonic boundary layer receptivity over a cone[C]∥? 38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008: 3734.
19 BALAKUMAR P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited)[C]∥?45th AIAA Fluid Dynamics Conference. Reston: AIAA, 2015: 2473.
20 DUAN L, CHOUDHARI M M, CHOU A, et al. Characterization of freestream disturbances in conventional hypersonic wind tunnels[J]. Journal of Spacecraft and Rockets201956(2): 357-368.
21 BALAKUMAR P, CHOU A. Transition prediction in hypersonic boundary layers using receptivity and freestream spectra[J]. AIAA Journal American Institute of Aeronautics and Astronautics201856(1): 193-208.
22 ZHONG X L. Effect of nose bluntness on hypersonic boundary layer receptivity over a blunt cone[C]∥? 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 5022.
23 WHEATON B, JULIANO T, BERRIDGE D, et al. Instability and transition measurements in the Mach-6 quiet tunnel[C]∥?39th AIAA Fluid Dynamics Conference. Reston: AIAA, 2009: 3559.
24 CHOU A. Characterization of laser-generated perturbations and instability measurements on a flared cone[D]. West Lafayette: Purdue University, 2010: 3-4.
25 CHOU A, WHEATON B, WARD C, et al. Instability and transition research in a Mach-6 quiet tunnel[C]∥? 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 283.
26 HUANG Y, ZHONG X. Numerical study of hypersonic boundary-layer receptivity and stability with freestream hotspot perturbations[J]. American Institute of Aeronautics & Astronautics201652(12):2652-2672.
27 HEITMANN D, RADESPIEL R. Simulation of the interaction of a laser generated shock wave with a hypersonic conical boundary layer[C]∥?41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3875.
28 江贤洋, 李存标. 高超声速边界层感受性研究综述[J]. 实验流体力学201731(2): 1-11.
  JIANG X Y, LI C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics201731(2): 1-11 (in Chinese).
29 KARA K, BALAKUMAR P, KANDIL O. Receptivity of hypersonic boundary layers due to acoustic disturbances over blunt cone[C]∥?45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 945.
30 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报202243(10):527408.
  SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527408 (in Chinese).
31 万兵兵. 考虑熵层高超声速钝头体边界层的感受性问题研究[D]. 天津: 天津大学, 2018.
  WAN B B. Study on sensitivity of hypersonic blunt body boundary layer considering entropy layer[D]. Tianjin: Tianjin University, 2018 (in Chinese).
32 HUANG Y, ZHONG X. Numerical study of freestream hot-spot perturbation on boundary-layer receptivity for blunt compression-cones in Mach-6 flow[C]?∥?41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3078.
33 FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics2015769: 99-728.
34 刘智勇, 禹旻, 杨武兵. 温度对高速平板边界层转捩雷诺数的影响[J]. 空气动力学学报202038(2): 308-315.
  LIU Z Y, YU M, YANG W B. Effect of temperature on the transitional Reynolds number of high-speed planar boundary layer[J]. Acta Aerodynamica Sinica. 202038(2): 308-315 (in Chinese).
35 梁贤. 高超声速钝锥边界层稳定性特征[D]. 上海: 上海大学, 2010.
  LIANG X. Stability characteristics of hypersonic blunt cone boundary layer[D]. Shanghai: Shanghai University, 2010 (in Chinese).
36 SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: The role of quiet tunnels[J]. Progress in Aerospace Sciences201572: 17-29.
37 MARINEAU E C. Prediction methodology for second-mode-dominated boundary-layer transition in wind tunnels[J]. AIAA Journal201655(2): 484-499.
Outlines

/