Fluid Mechanics and Flight Mechanics

Effect of rotor spacing on aerodynamic noise of rigid coaxial rotor

  • Haotian QI ,
  • Liangquan WANG ,
  • Weiguo ZHANG ,
  • Chaofan LIU ,
  • Tianmei PU
Expand
  • 1.College of Electrical,Energy and Power Engineering,Yangzhou University,Yangzhou 225127,China
    2.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2024-01-15

  Revised date: 2024-02-27

  Accepted date: 2024-04-07

  Online published: 2024-04-10

Supported by

National Natural Science Foundation of China(12102154);Foundation of State Key Laboratory of Aerodynamics(RAL202302-1)

Abstract

A flow field simulation method for the rigid coaxial rotor is established based on Reynolds averaged Navier⁃ Stokes equations and moving overset grid. Farassat 1A formulations are used for aerodynamic noise prediction. The effectiveness of the proposed methods is verified through comparison with relevant experiments. Research is conducted on the unsteady rotor thrust fluctuations and aerodynamic noise characteristics with different rotor spacing in hovering and forward flight states.Results show that with the increase of rotor spacing in the hovering state, the aerodynamic interactions of the two rotors are weakened. The thrust fluctuations and noise caused by interaction of blade-meeting are significantly reduced. Compared with that of the lower rotor, the noise of upper rotor caused by blade-meeting is weakened more significantly. The sound pressure waveforms of the upper rotor with different spacing are similar, while the waveforms of the lower rotor have significant changes. At the small advance ratio, the increase of rotor spacing changes the position and intensity of the interaction between the upper rotor blade tip vortex and the lower rotor. This kind of blade-vortex interaction noise is enhanced at a specific spacing. The effect of rotor spacing on aerodynamic noise is relatively small in high forward ratio states, while the noise reduction is more significant in low lift-offset states.

Cite this article

Haotian QI , Liangquan WANG , Weiguo ZHANG , Chaofan LIU , Tianmei PU . Effect of rotor spacing on aerodynamic noise of rigid coaxial rotor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(21) : 130153 -130153 . DOI: 10.7527/S1000-6893.2024.30153

References

1 BURGESS K R. The ABC? Rotor: A historical perspective[C]∥60th American Helicopter Society Annual Forum. Alexandria: American Helicopter Society International, 2004.
2 WACHSPRESS D A, QUACKENBUSH T R. Impact of rotor design on coaxial rotor performance, wake geometry and noise[C]∥62th American Helicopter Society Annual Forum. Alexandria: American Helicopter Society International, 2006: 41-63.
3 KIM H W, DURAISAMY K, BROWN R E. Effect of rotor stiffness and lift offset on the aeroacoustics of a coaxial rotor in level flight[C]∥65th American Helicopter Society Annual Forum. Alexandria: American Helicopter Society International, 2009: 1-21.
4 KLIMCHENKO V, SRIDHARAN A, BAEDER J D. CFD/CSD study of the aerodynamic interactions of a coaxial rotor in high-speed forward flight: AIAA-2017-4454[R]. Reston: AIAA, 2017.
5 PASSE B J, SRIDHARAN A, BAEDER J D. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight: AIAA-2015-2883[R]. Reston: AIAA, 2015.
6 LAKSHMINARAYAN V K, BAEDER J D. Computational investigation of microscale coaxial-rotor aerodynamics in hover[J]. Journal of Aircraft201047(3): 940-955.
7 XU H Y, YE Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics201124(1): 1-7.
8 朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报201637(2): 568-578.
  ZHU Z, ZHAO Q J, LI P. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica201637(2): 568-578 (in Chinese).
9 杨光, 赵旭, 闫修, 等. 共轴刚性旋翼的悬停气动性能和流场干扰[J]. 航空动力学报201833(1): 116-123.
  YANG G, ZHAO X, YAN X, et al. Aerodynamic performance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power201833(1): 116-123 (in Chinese).
10 QI H T, XU G H, LU C L, et al. Computational investigation on unsteady loads of high-speed rigid coaxial rotor with high-efficient trim model[J]. International Journal of Aeronautical and Space Sciences201920(1): 16-30.
11 QI H T, XU G H, LU C L, et al. A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technology201984: 1116-1130.
12 任明霞, 杨爱明. 基于OpenMP的旋翼气动噪声并行计算[J]. 复旦学报(自然科学版)201857(5): 587-595.
  REN M X, YANG A M. Parallel computation of rotor aerodynamic noise based on OpenMP[J]. Journal of Fudan University (Natural Science)201857(5): 587-595 (in Chinese).
13 JIA Z Q, LEE S, SHARMA K, et al. Aeroacoustic analysis of a lift-offset coaxial rotor using high-fidelity CFD/CSD loose coupling simulation[J]. Journal of the American Helicopter Society202065(1): 1-15.
14 朱正, 招启军, 陈丝雨, 等. 共轴双旋翼悬停状态气动噪声特性分析[J]. 声学学报201641(6): 833-842.
  ZHU Z, ZHAO Q J, CHEN S Y, et al. Analyses on aeroacoustic characteristics of coaxial rotors in hover[J]. Acta Acustica201641(6): 833-842 (in Chinese).
15 ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics201831(2): 214-224.
16 WANG B, CAO C K, ZHAO Q J, et al. Aeroacoustic characteristic analyses of coaxial rotors in hover and forward flight[J]. International Journal of Aeronautical and Space Sciences202122(6): 1278-1292.
17 QI H T, WANG P, JIANG L S, et al. High-efficiency hybrid trim method for CFD simulation of rigid coaxial rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023237(1): 141-155.
18 ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics1997135(2): 250-258.
19 SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992.
20 YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal198826(9): 1025-1026.
21 FARASSAT F. Linear acoustic formulas for calculation of rotating blade noise[J]. AIAA Journal198119(9): 1122-1130.
22 SILWAL L, RAGHAV V. Preliminary study of the near wake vortex interactions of a coaxial rotor in hover: AIAA-2020-0305[R]. Reston: AIAA, 2020.
23 BAEDER J D, GALLMAN J M, YU Y H. A computational study of the aeroacoustics of rotors in hover[J]. Journal of the American Helicopter Society199742(1): 39-53.
24 YU Y H, TUNG C, GALLMAN J, et al. Aerodynamics and acoustics of rotor blade-vortex interactions[J]. Journal of Aircraft199532(5): 970-977.
25 STRAWN R C, DUQUE E P N, AHMAD J. Rotorcraft aeroacoustics computations with overset-grid CFD methods[J]. Journal of the American Helicopter Society199944(2): 132-140.
26 HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor: NACA-TN-2318[R]. Washington, D.C.: NACA, 1951.
Outlines

/