ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Development trend of navigation guidance and control technology for new generation aircraft
Received date: 2023-10-13
Revised date: 2023-10-16
Accepted date: 2023-10-31
Online published: 2023-11-09
This paper systematically sorts out the development status of aviation navigation guidance and control technology at home and abroad, and analyzes the existing gaps and reasons through comparisons in terms of demand traction, principal mechanism, product realization and application services. Under the background of systematic coordinated operation supported by aviation aircraft, the requirements for networking, systematization and intelligence are taken as the technical development goals, and the future development priorities and program routes of navigation guidance and control technology are proposed in five aspects: supporting new quality combat concepts, high-precision autonomous navigation, multibody cooperative aircraft control, research and development of new generation core devices, and unified architecture of next generation aircraft control management. Action suggestions are finally put forward at the two levels of technology and management to guide the effective combination of China’s advantageous innovation resources. Facing the needs of future equipment development, this study can provide an important reference for promoting national defense science and technology towards high-quality development.
Weiping YANG . Development trend of navigation guidance and control technology for new generation aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529720 -529720 . DOI: 10.7527/S1000-6893.2024.29720
1 | 范晋祥, 陈晶华. 未来空战新概念及其实现挑战[J]. 航空兵器, 2020, 27(2): 15-24. |
FAN J X, CHEN J H. New concepts of future air warfare and the challenges for its realization[J]. Aero Weaponry, 2020, 27(2): 15-24 (in Chinese). | |
2 | 石玲玲, 张恒, 吕博, 等. 美国空军装备技术体系规划及发展分析[J]. 国防科技, 2017, 38(5): 31-35. |
SHI L L, ZHANG H, LV B, et al. Analysis of equipment technical system planning and development of American Air Force[J]. National Defense Science & Technology, 2017, 38(5): 31-35 (in Chinese). | |
3 | 孙盛智, 苗壮, 高赞, 等. 美国马赛克战构想[J]. 火力与指挥控制, 2022, 47(10): 180-184. |
SUN S Z, MIAO Z, GAO Z, et al. The conception research of the U. S. mosaic warfare[J]. Fire Control & Command Control, 2022, 47(10): 180-184 (in Chinese). | |
4 | 鲜勇, 李扬. 人工智能技术对未来空战武器的变革与展望[J]. 航空兵器, 2019, 26(5): 26-31. |
XIAN Y, LI Y. Revolution and prospect of artificial intelligence technology for air combat weapons in the future[J]. Aero Weaponry, 2019, 26(5): 26-31 (in Chinese). | |
5 | United States Air Force Chief scientist. Technology horizons: A vision for air force science & technology during 2010-2030: AF/FS-TR-10-01-PR[R]. Washington, D.C.: US Air Force. |
6 | BUTZ H, SAS A. The airbus approach to open integrated modular avionics (ima): Technology, methods, processes and future road map[C]∥International Workshop on Aircraft System Technol-ogies.2010. |
7 | MING W. Research on architecture of integrated modular avionics[J].Electronics Optics & Control, 2009, 16(9): 47. |
8 | EVELEENS RLC. Integrated modular avionics development guidance and certification considerations: NTO SCILS-176[R].Amsterdam: National Aerospace Laboratory, 2006. |
9 | MOORE J F. Civil integrated modular avionics–a longer-term view[J]. Aircraft Engineering and Aerospace Technology, 1999, 71(6): 550-557. |
10 | SAVAGE P G. Blazing gyros: The evolution of strapdown inertial navigation technology for aircraft[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 637-655. |
11 | 谭祖锋. 惯性导航技术的新进展及其发展趋势[J]. 电子技术与软件工程, 2019(5): 76. |
TAN Z F. New progress and development trend of inertial navigation technology[J]. Electronic Technology & Software Engineering, 2019(5): 76 (in Chinese). | |
12 | 高钟毓. 惯性导航系统技术[M]. 北京: 清华大学出版社, 2012. |
GAO Z Y. Inertial navigation system technology[M]. Beijing: Tsinghua University Press, 2012 (in Chinese). | |
13 | TITTERTON D, WESTON J. Strapdown inertial navigation technology-2nd edition-Book review[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(7): 33-34. |
14 | 杨新民.世界上最小的嵌入式惯导/GPS组合导航系统H—764G的鉴定[J].惯导与仪表,1997,(4):31-42 |
YANG X M. Identification of the world’s smallest embedded inertial/GPS integrated navigation system H-764G[J]. Inertial Navigation and Instrumentation,1997,(4):31-42 | |
15 | 刘基余. GPS卫星导航定位原理与方法[M]. 北京: 科学出版社, 2003. |
LIU J Y. Principle and method of GPS satellite navigation and positioning[M]. Beijing: Science Press, 2003 (in Chinese). | |
16 | 陈忠贵, 帅平, 曲广吉. 现代卫星导航系统技术特点与发展趋势分析[J]. 中国科学(E辑: 技术科学), 2009, 39(4): 686-695. |
CHEN Z G, SHUAI P, QU G J. Analysis of technical characteristics and development trend of modern satellite navigation system[J]. Science in China (Series E (Technological Sciences)), 2009, 39(4): 686-695 (in Chinese). | |
17 | 方群. 卫星定位导航基础[M]. 西安: 西北工业大学出版社, 1999. |
FANG Q. Fundamentals of satellite positioning and navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1999 (in Chinese). | |
18 | 武珺, 刘春保, 李俊博. 2021年国外导航卫星系统发展综述[J]. 国际太空, 2022(2): 38-41. |
WU J, LIU C B, LI J B. Overview of the development of foreign navigation satellite systems in 2021[J]. Space International, 2022(2): 38-41 (in Chinese). | |
19 | 过静珺, 卢建刚, 吴卫峰, 等. 欧洲伽利略导航系统的发展[J]. 测绘通报, 2002(2): 51-52. |
GUO J J, LU J G, WU W F, et al. Development of Galileo navigation system in Europe[J]. Bulletin of Surveying and Mapping, 2002(2): 51-52 (in Chinese). | |
20 | 李航, 蔡群, 王林强. 俄罗斯GLONASS导航系统的现状与未来[J]. 外军信息战, 2010(3): 42-46. |
LI H, CAI Q, WANG L Q. Current situation and future of GIONASS navigation system in Russia[J]. Foreign Military Information Warfare, 2010(3): 42-46 (in Chinese). | |
21 | 李建文. GLONASS卫星导航系统及GPS/GLONASS组合应用研究[D]. 郑州: 解放军信息工程大学, 2001. |
LI J W. Research on GLONASS satellite navigation system and GPS/GLONASS combined application[D].Zhengzhou: PLA Information Engineering University, 2001 (in Chinese). | |
22 | WEIIENHOF B H, LICHTENEGGER H, WASLE E. 全球卫星导航系统: GPS, GLONASS, Galileo及其他系统[M]. 程鹏飞, 译. 北京: 测绘出版社, 2009. |
WEIIENHOF B H, LICHTENEGGER H, WASLE E. GNSS-Global navigation satellite systems[M]. CHENG P F, translated. Beijing: Sino Maps Press, 2009 (in Chinese). | |
23 | 刘建业, 冷雪飞, 熊智, 等. 惯性组合导航系统的实时多级景象匹配算法[J]. 航空学报, 2007, 28(6): 1401-1407. |
LIU J Y, LENG X F, XIONG Z, et al. Real-time multi-level scene matching algorithm for inertial integrated navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1401-1407 (in Chinese). | |
24 | 熊智, 刘建业, 曾庆化, 等. 景像匹配辅助导航系统中的图像匹配算法研究[J]. 中国图象图形学报, 2004, 9(1): 29-34. |
XIONG Z, LIU J Y, ZENG Q H, et al. The study of image matching algorithm for scene matching aided navigation system[J]. Journal of Image and Graphics, 2004, 9(1): 29-34. (in Chinese) | |
25 | 赵锋伟. 景象匹配算法、性能评估及其应用[D]. 长沙: 中国人民解放军国防科学技术大学, 2002. |
ZHAO F W. Scene matching algorithm, performance evaluation and its application[D].Changsha: National University of Defense Technology, 2002 (in Chinese). | |
26 | 陈苗海. 机载光电导航瞄准系统的应用和发展概况[J]. 电光与控制, 2003, 10(4): 42-46, 53. |
CHEN M H. Airborne EO targeting & navigation system application and its development[J]. Electronics Optics & Control, 2003, 10(4): 42-46, 53 (in Chinese). | |
27 | 马涛,胡小平,练军想,等.仿生导航技术研究综述[C].∥洛阳惯性技术学会2014年学术年会论文集. 洛阳: 洛阳惯性技术学会, 2014:21-29 |
MA T, HU X P, LIAN J X,etc. A Review of Biomimetic Navigation Technology Research [C].∥ Proceedings of the 2014 Academic Annual Meeting of Luoyang Inertial Technology Society. Luoyang: Inertial Navigation and Instrumentation Luoyang Inertial Technology Society, 2014: 21-29 | |
28 | 王耀南, 李树涛. 多传感器信息融合及其应用综述[J]. 控制与决策, 2001, 16(5): 518-522. |
WANG Y N, LI S T. Multisensor information fusion and its application: A survey[J]. Control and Decision, 2001, 16(5): 518-522 (in Chinese). | |
29 | 申功勋, 孙建峰. 信息融合理论在惯性/天文/GPS组合导航系统中的应用[M]. 北京: 国防工业出版社, 1998. |
SHEN G X, SUN J F. The application of information fusion theory in INS/CNS/GPS integrated navigation system[M]. Beijing: National Defense Industry Press, 1998 (in Chinese). | |
30 | 王慧哲, 曾庆化, 刘建业, 等. 基于因子图的无人机全源导航关键技术研究[J]. 导航与控制, 2017, 16(2): 1-5. |
WANG H Z, ZENG Q H, LIU J Y, et al. Research on the key technology of UAV of all source position navigation based on factor graph[J]. Navigation and Control, 2017, 16(2): 1-5 (in Chinese). | |
31 | 刘春保. 美国打造新的军用“全源导航”[J]. 国际太空, 2013(4): 46-49. |
LIU C B. The United States builds a new military “all-source navigation”[J]. Space International, 2013(4): 46-49 (in Chinese). | |
32 | 陈颖,马忠孝,贺峻峰.全源定位与导航技术发展概况和应用展望[C]∥洛阳惯性技术学会2015年学术年会论文集.洛阳: 洛阳惯性技术学会, 2015: 144-147. |
CHEN Y, MA Z X, HE J F. Development survey and application outlook in all source position and navigation [C]∥ Proceedings of the 2015 Academic Annual Meeting of Luoyang Inertial Technology Society. Luoyang: Luoyang Inertial Technology Society, 2015: 144-147. | |
33 | 郑峰婴. 舰载机着舰引导技术研究[D]. 南京: 南京航空航天大学, 2007. |
ZHENG F Y. Research on carrier landing technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). | |
34 | 周煜, 伍逸夫, 赵峰. 航母着舰引导系统概述[J]. 舰船电子工程, 2011, 31(11): 22-24, 36. |
ZHOU Y, WU Y F, ZHAO F. Review on the landing vectoring system of aircraft carrier[J]. Ship Electronic Engineering, 2011, 31(11): 22-24, 36 (in Chinese). | |
35 | 戴文正. 无人直升机自主着舰引导与控制技术研究[D]. 南京: 南京航空航天大学, 2014. |
DAI W Z. Guidance and control of autonomous helicopter ship landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
36 | 董新民, 徐跃鉴, 陈博. 自动空中加油技术研究进展与关键问题[J]. 空军工程大学学报(自然科学版), 2008, 9(6): 1-5. |
DONG X M, XU Y J, CHEN B. Progress and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(6): 1-5 (in Chinese). | |
37 | 钦庆生. 飞行管理计算机系统[M]. 北京: 国防工业出版社, 1991. |
QIN Q S. Flight management computer system[M]. Beijing: National Defense Industry Press, 1991 (in Chinese). | |
38 | 罗巧云. 第五代战斗机在未来空战中的应用[J]. 国防科技, 2017, 38(4): 57-62. |
LUO Q Y. Review on the operational application of the fifth generation fighter in future air combat[J]. National Defense Science & Technology, 2017, 38(4): 57-62 (in Chinese). | |
39 | BAE J. A review of electric actuation and flight control system for more/all electric aircraft[C]∥ 2021 24th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2021: 1943-1947. |
40 | KIM N H, AN D, CHOI J H. Prognostics and health management of engineering systems[M]. Cham: Springer International Publishing, 2017. |
41 | HARRIS J J. F-35 flight control law design, development and verification: AIAA-2018-3516[R]. Reston: AIAA, 2018. |
42 | MALISANI S, CAPELLO E. Modeling framework for dynamic wing loads and control design of a flexible aircraft: AIAA-2021-0117[R]. Reston: AIAA, 2021. |
43 | SINGH L, MIOTTO P, BREGER L S. L1 adaptive control design for improved handling of the F/A-18 class of aircraft: AIAA-2013-5236[R]. Reston: AIAA, 2013. |
44 | AVANZINI G, CAPELLO E, PIACENZA I, et al. L1 adaptive control of flexible aircraft: Preliminary results: AIAA-2010-7501[R]. Reston: AIAA, 2010. |
45 | 蔡琰. 国外射流飞行控制技术发展及前景分析[J]. 航空科学技术, 2020, 31(1): 85-86. |
CAI Y. Development and prospect analysis of jet flight control technology abroad[J]. Aeronautical Science & Technology, 2020, 31(1): 85-86 (in Chinese). | |
46 | MEYER D, LARSEN M. Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2): 75-82. |
47 | SAVOIE D, ALTORIO M, FANG B, et al. Interleaved atom interferometry for high sensitivity inertial measurements[C]∥ 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC). Piscataway: IEEE Press, 2019: 1-3. |
48 | WU X J, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer[J]. Science Advances, 2019, 5(9): eaax0800. |
49 | Vanthuyne T, Potini A, Looringhe G D C D,et al. Electro-mechanical thrust vector control systems for the VEGA-C launcher[C]∥IAF Space Systems Symposium;International Astronautical Congress.2020 |
50 | MECROW B C, JACK A G, ATKINSON D J, et al. Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 671-678. |
51 | ATKINSON G J, MECROW B C, JACK A G, et al. The design of fault tolerant machines for aerospace applications[C]∥ IEEE International Conference on Electric Machines and Drives. Piscataway: IEEE Press, 2005: 1863-1869. |
52 | WANG B, WANG J B, GRIFFO A, et al. Investigation into fault-tolerant capability of a triple redundant PMA SynRM drive[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1611-1621. |
53 | ZHAO K C, CHU J K, WANG T C, et al. A novel angle algorithm of polarization sensor for navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(8): 2791-2796. |
54 | FAN C, HU X P, LIAN J X, et al. Design and calibration of a novel camera-based bio-inspired polarization navigation sensor[J]. IEEE Sensors Journal, 2016, 16(10): 3640-3648. |
55 | 曹昭睿, 郝永平, 刘万成, 等. 紧凑折反式仿生复眼及图像快速拼接识别算法[J]. 兵工学报, 2022, 43(8): 1845-1857. |
CAO Z R, HAO Y P, LIU W C, et al. Compact catadioptric bionic compound eye and fast image mosaic recognition algorithm[J]. Acta Armamentarii, 2022, 43(8): 1845-1857 (in Chinese). | |
56 | LIU X, YANG J A, GUO L, et al. Design and calibration model of a bioinspired attitude and heading reference system based on compound eye polarization compass[J]. Bioinspiration & Biomimetics, 2021, 16(1): 016001. |
57 | WANG S P, QIU Z B, HUANG P P, et al. A bioinspired navigation system for multirotor UAV by integrating polarization compass/magnetometer/INS/GNSS[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8526-8536. |
58 | YANG Y T, WANG Y, YU X A, et al. Moonlit polarized skylight-aided INS/CNS: An enhanced attitude determination method[J]. Control Engineering Practice, 2023, 132: 105408. |
59 | 吴文海, 高阳, 汪节. 飞行控制系统的发展历程、现状与趋势[J]. 飞行力学, 2018, 36(4): 1-5, 10. |
WU W H, GAO Y, WANG J. Development course, status and trend of flight control system[J]. Flight Dynamics, 2018, 36(4): 1-5, 10 (in Chinese). | |
60 | 李哲.大型运输机飞控系统可靠性设计技术分析[C]∥大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集. 北京: 中国航空学会, 2007: 415-420. |
LI Z. Analysis of reliability design technology for flight control system of large transport aircraft[C]∥ Proceedings of the Key Technologies Forum for Large Aircraft and the 2007 Annual Meeting of the Chinese Aviation Society. Beijing: Chinese Aviation Society, 2007: 415-420. | |
61 | 占正勇, 刘林. 控制分配在复杂飞行控制系统中的应用设计[J]. 飞行力学, 2006, 24(2): 73-76, 85. |
ZHAN Z Y, LIU L. Implementation of control allocation in flight control with multi-effectors[J]. Flight Dynamics, 2006, 24(2): 73-76, 85 (in Chinese). | |
62 | 李冀鑫, 侯志强, 徐彦军. 基于总能量理论的着舰飞行/推力控制系统[J]. 飞行力学, 2010, 28(2): 35-38. |
LI J X, HOU Z Q, XU Y J. Integrated carrier landing flight/thrust control system based on total energy theory[J]. Flight Dynamics, 2010, 28(2): 35-38 (in Chinese). | |
63 | 范超, 赵琳, 段海军. 航空数据总线技术研究[J]. 信息技术与信息化, 2022(4): 160-163. |
FAN C, ZHAO L, DUAN H J. Research on aviation data bus technology[J]. Information Technology and Informatization, 2022(4): 160-163 (in Chinese). | |
64 | 夏立群, 张新国. 直接驱动阀式伺服作动器研究[J]. 西北工业大学学报, 2006, 24(3): 308-312. |
XIA L Q, ZHANG X G. Development of DDV(direct drive valve) servo actuator[J]. Journal of Northwestern Polytechnical University, 2006, 24(3): 308-312 (in Chinese). | |
65 | 魏毅寅, 郝明瑞, 范宇. 人工智能技术在宽域飞行器控制中的应用[J]. 宇航学报, 2023, 44(4): 530-537. |
WEI Y Y, HAO M R, FAN Y. The application of artificial intelligence technology in wide-field vehicle control[J]. Journal of Astronautics, 2023, 44(4): 530-537 (in Chinese). | |
66 | 马卫华. 导弹/火箭制导、导航与控制技术发展与展望[J]. 宇航学报, 2020, 41(7): 860-867. |
MA W H. Review and prospect of missile/launch vehicle guidance, navigation and control technologies[J]. Journal of Astronautics, 2020, 41(7): 860-867 (in Chinese). | |
67 | 杨涛, 杨博, 殷允强, 等. 多智能体系统协同控制与优化专刊序言[J]. 控制与决策, 2023, 38(5): 1153-1158. |
YANG T, YANG B, YIN Y Q, et al. Guest editorial of special issue on cooperative control and optimization for multi-agent systems[J]. Control and Decision, 2023, 38(5): 1153-1158 (in Chinese). | |
68 | 李文革, 黄晓利, 谢世富. 导航战在信息化战争中的作用[J]. 信息与电子工程, 2004, 2(2): 153-156. |
LI W G, HUANG X L, XIE S F. Navwar in information operations[J]. Information and Electronic Engineering, 2004, 2(2): 153-156 (in Chinese). | |
69 | 马海宁, 潘颜楠, 孙志. 基于欺骗干扰技术的导航对抗新途径[J]. 指挥控制与仿真, 2021, 43(4): 128-133. |
MA H N, PAN Y N, SUN Z. A new way of navigation countermeasure based on GPS spoofing attacks[J]. Command Control & Simulation, 2021, 43(4): 128-133 (in Chinese). | |
70 | 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510. |
YANG Y X. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510 (in Chinese). | |
71 | 王巍, 孟凡琛, 阚宝玺. 国家综合PNT体系下的多源自主导航系统技术[J]. 导航与控制, 2022, 21(S1): 1-10. |
WANG W, MENG F C, KAN B X. Multi-source autonomous navigation system technology under national comprehensive PNT system[J]. Navigation and Control, 2022, 21(S1): 1-10 (in Chinese). | |
72 | 卞鸿巍, 许江宁, 何泓洋, 等. 国家综合PNT体系弹性概念[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1265-1272. |
BIAN H W, XU J N, HE H Y, et al. The concept of resilience of national comprehensive PNT system[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1265-1272 (in Chinese). | |
73 | 杨昆, 康戈文, 李洪. 重力场和地磁场综合匹配在导航中的运用[J]. 船海工程, 2010, 39(1): 129-131. |
YANG K, KANG G W, LI H. Application of gravity and geomagnetism matching in navigation[J]. Ship & Ocean Engineering, 2010, 39(1): 129-131 (in Chinese). | |
74 | 黄高明, 景桐, 田威. 机会信号导航综述[J]. 控制与决策, 2019, 34(6): 1121-1131. |
HUANG G M, JING T, TIAN W. Survey on navigation via signal of opportunity[J]. Control and Decision, 2019, 34(6): 1121-1131 (in Chinese). | |
75 | 冯云皓. 低地球轨道卫星导航的当前能力与未来展望[J]. 防务视点, 2017(S1): 118-119. |
FENG Y H. Current ability and future prospect of satellite navigation in low earth orbit[J]. Defense Point, 2017(S1): 118-119 (in Chinese). | |
76 | ZHOU Y B, LAI J, GUO X Y, et al. A research on all source navigation and positioning and its critical technology[C]∥China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III. Berlin: Springer, 2015: 801-808. |
77 | 宋丽君, 薛连莉, 董燕琴, 等. 全源定位与导航的发展与建议[J]. 导航与控制, 2017, 16(6): 99-105, 24. |
SONG L J, XUE L L, DONG Y Q, et al. Development and suggestions of all sources position and navigation[J]. Navigation and Control, 2017, 16(6): 99-105, 24 (in Chinese). | |
78 | 雷宏杰, 姚呈康. 面向军事应用的航空人工智能技术架构研究[J]. 导航定位与授时, 2020, 7(1): 1-11. |
LEI H J, YAO C K. Technical architecture of aviation artificial intelligence for military application[J]. Navigation Positioning and Timing, 2020, 7(1): 1-11 (in Chinese). | |
79 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
80 | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
81 | 柳文林, 潘子双, 韩维, 等. 有人/无人机协同作战运用研究现状与展望[J]. 海军航空大学学报, 2022, 37(3): 231-241. |
LIU W L, PAN Z S, HAN W, et al. Research review and prospect on the application of manned/unmanned aerial vehicle cooperative combat[J]. Journal of Naval Aviation University, 2022, 37(3): 231-241 (in Chinese). | |
82 | 钟赟, 姚佩阳, 张杰勇, 等. 基于HFCM的有人-无人机作战系统交互式协同决策[J]. 系统工程理论与实践, 2021, 41(10): 2748-2760. |
ZHONG Y, YAO P Y, ZHANG J Y, et al. Interactive cooperative decision-making of manned-unmanned aerial vehicle combat system based on HFCM[J]. Systems Engineering-Theory & Practice, 2021, 41(10): 2748-2760 (in Chinese). | |
83 | 雷耀麟, 丁文锐, 李雅, 等. 群体智能支撑的无人机群航路规划应用综述[J]. 无线电工程, 2023, 53(7): 1509-1519. |
LEI Y L, DING W R, LI Y, et al. Review on biological swarm intelligence algorithm in UAV path planning[J]. Radio Engineering, 2023, 53(7): 1509-1519 (in Chinese). | |
84 | 苗昊春, 刘重, 王根. 协同制导控制技术发展现状及展望[J]. 前瞻科技, 2022, 1(4): 40-54. |
MIAO H C, LIU Z, WANG G. Research status and prospects of cooperative guidance and control technology[J]. Science and Technology Foresight, 2022, 1(4): 40-54 (in Chinese). | |
85 | 张栋, 王孟阳, 唐硕. 面向任务的无人机集群自主决策技术[J]. 指挥与控制学报, 2022, 8(4): 365-377. |
ZHANG D, WANG M Y, TANG S. Autonomous decision-making technology for task-oriented UAV swarm[J]. Journal of Command and Control, 2022, 8(4): 365-377 (in Chinese). | |
86 | 高杨, 李东生, 柳向. 无人机集群协同态势觉察一致性评估[J]. 电子学报, 2019, 47(1): 190-196. |
GAO Y, LI D S, LIU X. UAV swarm cooperative situation perception consensus evaluation[J]. Acta Electronica Sinica, 2019, 47(1): 190-196 (in Chinese). | |
87 | TAKASE K. Precision rotation rate measurements with a mobile atom interferometer Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2008 |
88 | LARSEN M, BULATOWICZ M. Nuclear magnetic resonance gyroscope: For DARPA’s micro-technology for positioning, navigation and timing program[C]∥ 2012 IEEE International Frequency Control Symposium Proceedings. Piscataway: IEEE Press, 2012: 1-5. |
89 | GRACE M R, GAGATSOS C N, ZHUANG Q T, et al. Quantum-enhanced fiber-optic gyroscopes using quadrature squeezing and continuous-variable entanglement[C]∥ Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 2020: 2160-8989. |
90 | 郑纬民. 处理人工智能应用的高性能计算机的架构和评测[J]. 重庆邮电大学学报(自然科学版), 2021, 33(2): 171-175. |
ZHENG W M. Architecture and evaluation of high-performance computers for processing artificial intelligence applications[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(2): 171-175 (in Chinese). | |
91 | 段宇博, 边庆, 齐宇心. 机载计算机多核系统架构选择分析[J]. 长江信息通信, 2022, 35(12): 67-69. |
DUAN Y B, BIAN Q, QI Y X. Analysis on architecture selection of airborne computer multi-core system[J]. Changjiang Information & Communications, 2022, 35(12): 67-69 (in Chinese). | |
92 | 鄂金龙, 何林. 基于异构算力节点协同的高效视频分发[J]. 计算机研究与发展, 2023, 60(4): 772-785. |
E J L, HE L. Efficient video distribution based on collaboration of heterogenous computing nodes[J]. Journal of Computer Research and Development, 2023, 60(4): 772-785 (in Chinese). | |
93 | 马跃, 朱纪洪, 杨佳利. 基于时间触发通信的机载网络可靠性[J]. 计算机工程与设计, 2020, 41(5): 1201-1206. |
MA Y, ZHU J H, YANG J L. Reliability of airborne network based on time-triggered communication[J]. Computer Engineering and Design, 2020, 41(5): 1201-1206 (in Chinese). | |
94 | 王昭, 成书锋, 马小博. 综合多任务的高可靠容错计算机设计与实现[J]. 航空计算技术, 2020, 50(4): 110-112. |
WANG Z, CHENG S F, MA X B. Design and implementation of highly reliable fault-tolerant computer with integrated multi-task[J]. Aeronautical Computing Technique, 2020, 50(4): 110-112 (in Chinese). | |
95 | 吴美平, 唐康华, 任彦超, 等. 基于SiP的低成本微小型GNC系统技术[J]. 导航定位与授时, 2021, 8(6): 19-27. |
WU M P, TANG K H, REN Y C, et al. Low-cost micro navigation guidance and control system technology based on SiP[J]. Navigation Positioning and Timing, 2021, 8(6): 19-27 (in Chinese). | |
96 | 华虹, 刘鸿瑾, 李宾, 等. 一种宇航微系统SiP计算机模块的分析及设计[J]. 微电子学与计算机, 2023, 40(1): 156-164. |
HUA H, LIU H J, LI B, et al. Analysis and design of a SiP computer module for aerospace microsystem[J]. Microelectronics & Computer, 2023, 40(1): 156-164 (in Chinese). | |
97 | 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展[J]. 物理学报, 2022, 71(23): 8-19. |
WANG N, WANG B C, GUO G P. New progress of silicon-based semiconductor quantum computation[J]. Acta Physica Sinica, 2022, 71(23): 8-19 (in Chinese). | |
98 | 陈雨, 王修业, 孙芹芹, 等. 基于伺服约束的无人作战平台跟随避让控制[J]. 南京理工大学学报, 2023, 47(1): 24-32. |
CHEN Y, WANG X Y, SUN Q Q, et al. Tracing-avoidance control of unmanned combat platform based on servo constraint[J]. Journal of Nanjing University of Science and Technology, 2023, 47(1): 24-32 (in Chinese). | |
99 | 郭涛, 陈朝, 程瀚, 等. 美军的2030年制空优势项目: “下一代空中主宰”(NGAD)项目发展启示[J]. 航天电子对抗, 2022, 38(5): 50-53, 64. |
GUO T, CHEN Z, CHENG H, et al. Development of next-generation air dominance project of U.S.military for air superiority 2030[J]. Aerospace Electronic Warfare, 2022, 38(5): 50-53, 64 (in Chinese). | |
100 | TAKAHASHI M D, FUJIZAWA B T, LUSARDI J A, et al. Autonomous guidance and flight control on a partial-authority black hawk helicopter: AIAA-2020-3286[R]. Reston: AIAA, 2020. |
101 | Wigginton, Scott A, et al. Joint common architecture demonstration (JCA Demo) final report[R]. 2016 |
102 | LEVINSON R, FRANK J D, IATAURO M, et al. Development and testing of a vehicle management system for autonomous spacecraft habitat operations: AIAA-2018-5148[R]. Reston: AIAA, 2018. |
103 | G?RKE S, RIEBELING R, KRAUS F, et al. Flexible platform approach for fly-by-wire systems[C]∥ 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2014: 2C5-1. |
104 | LOVELESS A T. On TTEthernet for integrated fault-tolerant spacecraft networks: AIAA-2015-4526[R]. Reston: AIAA, 2015. |
105 | FLETCHER M. Design to cost methods to lower the avionics cost for nasa commercial crew efforts: AIAA-2010-8916[R]. Reston: AIAA, 2010. |
106 | RASCHELLà A, BOUHAFS F, MACKAY M, et al. Smart access point selection for dense WLANs: A use-case[C]∥ 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2018: 1-6. |
107 | 程林, 蒋方华, 李俊峰. 深度学习在飞行器动力学与控制中的应用研究综述[J]. 力学与实践, 2020, 42(3): 267-276. |
CHENG L, JIANG F H, LI J F. A review on the applications of deep learning in aircraft dynamics and control[J]. Mechanics in Engineering, 2020, 42(3): 267-276 (in Chinese). | |
108 | XU J E, DU T, FOSHEY M, et al. Learning to fly[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12. |
109 | 褚思真, 万劲波. 创新链产业链的融合机制与路径研究[J]. 创新科技, 2022, 22(10): 41-51. |
CHU S Z, WAN J B. Research on the integration mechanism and path of innovation chain and industry chain[J]. Innovation Science and Technology, 2022, 22(10): 41-51 (in Chinese). | |
110 | 刘传明, 王睿, 姜常梅. 国家创新体系整体效能的理论阐释、现实挑战与实现路径[J]. 国际金融, 2023(5): 3-13. |
LIU C M, WANG R, JIANG C M. Theoretical explanation, realistic challenge and realization path of the overall efficiency of national innovation system[J]. International Finance, 2023(5): 3-13 (in Chinese). |
/
〈 |
|
〉 |