ACTA AERONAUTICAET ASTRONAUTICA SINICA >
All-domain fire field in future air combat
Received date: 2023-10-10
Revised date: 2023-10-11
Accepted date: 2023-10-12
Online published: 2023-10-18
This paper analyzes the development trend and the key to success of Penetrating Counter Air (PCA) combat in the future, focusing on the two remarkable characteristics of full platform stealth and distributed killing of PCA. Firstly, based on the organic integration and complementary advantages of two fire control modes, “target-centered all-aspect attack ”and“all-aspect attack of the launch platform” and the full-time airspace framework characterized by before/after shooting and coverage of multi-aircraft, multi-missiles and multi-targets, the concept and design principle of PCA all-domain fire field are proposed, which reflect the dynamic and comprehensive lethality performance of multi-fire nodes of coordinated air combat from a global multi-level perspective. The time-varying lethality performance model of air-to-air missiles based on the acquisition probability and its full-probability formula is redefined. Then, a single-machine fire field model and a dual-machine fire field aggregation model are established. Secondly, by introducing the three physical concepts of “gradient, divergence and curl” of field, the characterization model of space distribution, action range and deflection change characteristics of fire field are established, and the corresponding simulation and characteristic analysis of the fire field are carried out. Finally, two typical air-to-air combat tactics scenes of applying the all-domain fire field to the aiming and manipulation, single-aircraft stealth penetration and two-aircraft coordinated attack in Observe-Orient-Decide-Act (OODA) closed loop fire control are explored. It is proved that this new fire control principle possesses good technical advantages and application potential. This research plays an important role in giving full play to the performance of new weapons and equipment and effective improvement of the capability of free attack and free escape and the effectiveness of air combat. It can also provide theoretical support and technical reference for the agile construction of distributed kill net, dynamic combination of killing chain and analysis of new tactical methods for future air combat.
Key words: all-domain fire field; penetrating counter air; all-aspect attack; gradient; divergence; curl
Lanfeng XIE , Jun CHEN , Lu JIAO , Hanzhi LI , Peng WANG , Shuang CHEN . All-domain fire field in future air combat[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529699 -529699 . DOI: 10.7527/S1000-6893.2024.29699
1 | 曹兰英, 董晔, 郭维娜. 机载火控雷达发展趋势探究[J]. 航空科学技术, 2021, 32(6): 1-8. |
CAO L Y, DONG Y, GUO W N. Development trend analysis of airborne fire-control radars[J]. Aeronautical Science & Technology, 2021, 32(6): 1-8 (in Chinese). | |
2 | 任淼, 刘晶晶, 刘凯, 等. 2022年国外空空导弹发展动态研究[J]. 航空兵器, 2023, 30(4): 33-41. |
REN M, LIU J J, LIU K, et al. Research on foreign air-to-air missiles’ development in 2022[J]. Aero Weaponry, 2023, 30(4): 33-41 (in Chinese). | |
3 | Team E C C. Air superiority 2030 flight plan[R]. Washington, D.C.: US Air Force, 2016. |
4 | 段鹏飞, 樊会涛. 从穿透性制空(PCA)看美军《2030年空中优势飞行规划》[J]. 航空兵器, 2017, 24(3): 20-25. |
DUAN P F, FAN H T. Discussion on US forces air superiority 2030 flight plan from penetrating counterair(PCA)[J]. Aero Weaponry, 2017, 24(3): 20-25 (in Chinese). | |
5 | 苑桂萍, 张绍芳. 美军穿透型制空概念及相关导弹武器发展[J]. 战术导弹技术, 2018(1): 37-41. |
YUAN G P, ZHANG S F. Penetrating counter air concept of USAF and its missile weapon development[J]. Tactical Missile Technology, 2018(1): 37-41 (in Chinese). | |
6 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
7 | 樊会涛, 闫俊. 空战体系的演变及发展趋势[J]. 航空学报, 2022, 43(10): 527397. |
FAN H T, YAN J. Evolution and development trend of air combat system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527397 (in Chinese). | |
8 | 樊会涛. 空战制胜“四先”原则[J]. 航空兵器, 2013, 20(1): 3-7. |
FAN H T. Four “first” principles to win in air combat[J]. Aero Weaponry, 2013, 20(1): 3-7 (in Chinese). | |
9 | 李德栋, 肖楚琬, 逄绪阳. F-35全向光电探测系统实战性分析[J]. 激光与红外, 2017, 47(3): 322-326. |
LI D D, XIAO C W, PANG X Y. Practicability analysis on panoramic electric-optical detection system of F-35 fighter[J]. Laser & Infrared, 2017, 47(3): 322-326 (in Chinese). | |
10 | 樊会涛, 崔颢, 天光. 空空导弹70年发展综述[J]. 航空兵器, 2016, 23(1): 3-12. |
FAN H T, CUI H, TIAN G. A review on the 70-year development of air-to-air missiles[J]. Aero Weaponry, 2016, 23(1): 3-12 (in Chinese). | |
11 | 高劲松, 赵华超, 田省民. 空空导弹的两种全向攻击方式的关系[J]. 电光与控制, 2018, 25(12): 3-7 |
GAO J S, ZHAO H C, TIAN X M. On relationship between two modes of AAM’s all-aspect attack[J]. Electronics Optics & Control, 2018, 25(12): 3-7 (in Chinese). | |
12 | 田省民, 雷迅, 陈哨东, 等. 未来空战全向攻击的需求分析[J]. 电光与控制, 2013, 20(2): 11-14. |
TIAN S M, LEI X, CHEN S D, et al. Requirement analysis for all aspect attack in future air combat[J]. Electronics Optics & Control, 2013, 20(2): 11-14 (in Chinese). | |
13 | 周志刚. 航空综合火力控制原理[M]. 北京: 国防工业出版社, 2008: 125-130. |
ZHOU Z G. Principle of aviation integrated fire control[M]. Beijing: National Defense Industry Press, 2008: 125-130 (in Chinese). | |
14 | HUI Y L, NAN Y, CHEN S D, et al. Dynamic attack zone of air-to-air missile after being launched in random wind field[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1519-1528. |
15 | 张安柯, 孔繁峨. 空空导弹射后动态攻击区的计算及信息提示[J]. 电光与控制, 2016, 23(1): 75-79. |
ZHANG A K, KONG F E. Calculation and function of attack zone of air-toAir missile after launching[J]. Electronics Optics & Control, 2016, 23(1): 75-79 (in Chinese). | |
16 | 张安柯, 孔繁峨, 贺建良. 目标强机动对中远程空空导弹可攻击区的影响[J]. 弹箭与制导学报, 2016, 36(2): 21-25. |
ZHANG A K, KONG F E, HE J L. Effect of strong maneuver target on attacking area of long-range air-to-air missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(2): 21-25 (in Chinese). | |
17 | 王杰, 丁达理, 许明, 等. 基于目标机动预估的空空导弹可发射区建模及仿真分析[J]. 弹道学报, 2018, 30(4): 44-52. |
WANG J, DING D L, XU M, et al. Modeling and simulation analysis of allowable launch envelope of air-to-air missile based on target maneuver estimation[J]. Journal of Ballistics, 2018, 30(4): 44-52 (in Chinese). | |
18 | 徐胜, 张安柯, 孔繁峨. 双机协同作战下导弹协同攻击区仿真分析[J]. 电光与控制, 2018, 25(9): 45-48. |
XU S, ZHANG A K, KONG F E. Simulation analysis on coordinated attack zone of dual-aircraft cooperative operation[J]. Electronics Optics & Control, 2018, 25(9): 45-48 (in Chinese). | |
19 | 徐国训, 梁晓龙, 张佳强, 等. 双机空空导弹协同攻击区仿真研究[J]. 火力与指挥控制, 2019, 44(1): 34-39. |
XU G X, LIANG X L, ZHANG J Q, et al. Simulation research on air-to-air missile cooperating weapon engagement zone of two aircrafts[J]. Fire Control & Command Control, 2019, 44(1): 34-39 (in Chinese). | |
20 | 李爱国, 何宗康, 孟亚楠, 等. 双机空空导弹攻击区仿真研究[J]. 计算机仿真, 2020, 37(12): 31-34, 89. |
LI A G, HE Z K, MENG Y N, et al. Simulation research on air-to-air missile attack zone of two aircrafts[J]. Computer Simulation, 2020, 37(12): 31-34, 89 (in Chinese). | |
21 | 欧维义. 场的数学描写方法[M]. 长春: 吉林人民出版社, 1983: 17-19. |
OU W Y. Mathematical description method of field[M]. Changchun: Jilin People’s Press, 1983: 17-19 (in Chinese). | |
22 | VATHSAL S, SARKAR A K. Current trends in tactical missile guidance[J]. Defence Science Journal, 2005, 55(3): 265-280. |
23 | 赵晓睿, 高晓光, 张建东. 主动雷达型空空导弹截获概率分析[J]. 飞行力学, 2002, 20(3): 59-62. |
ZHAO X R, GAO X G, ZHANG J D. Target acquisition probability analysis for active radar-guided air-to-air missile[J]. Flight Dynamics, 2002, 20(3): 59-62 (in Chinese). | |
24 | 赵志伟, 张安, 夏庆军, 等. 中远程空空导弹目标截获概率仿真计算[J]. 火力与指挥控制, 2011, 36(10): 160-164. |
ZHAO Z W, ZHANG A, XIA Q J, et al. Simulated computation of target-acquisition probability of intermediate-long-range air-to-air missile[J]. Fire Control & Command Control, 2011, 36(10): 160-164 (in Chinese). | |
25 | 樊会涛. 复合制导空空导弹截获目标概率研究[J]. 航空学报, 2010, 31(6): 1225-1229. |
FAN H T. Study on target acquisition probability of air-to-air missiles with combined guidance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1225-1229 (in Chinese). | |
26 | 苗涛, 杨毅, 南英. 导弹动态可攻击区实时在线算法研究[J]. 飞行力学, 2018, 36(2): 39-43. |
MIAO T, YANG Y, NAN Y. Research on real-time online algorithm of missile dynamic attack zone[J]. Flight Dynamics, 2018, 36(2): 39-43 (in Chinese). | |
27 | 葛鲁亲, 孙旺, 南英. 对空导弹射后动态可攻击区的快速高精度拟合方法研究[J]. 航空兵器, 2019, 26(5): 41-47. |
GE L Q, SUN W, NAN Y. Fast and high-precision fitting method of dynamic attack zone for antiaircraft missile after being launched[J]. Aero Weaponry, 2019, 26(5): 41-47 (in Chinese). | |
28 | 方学毅, 刘俊贤, 周德云. 基于背景插值的空空导弹攻击区在线模拟方法[J]. 系统工程与电子技术, 2019, 41(6): 1286-1293. |
FANG X Y, LIU J X, ZHOU D Y. Background interpolation for on-line simulation of capture zone of air-to-air missiles[J]. Systems Engineering and Electronics, 2019, 41(6): 1286-1293 (in Chinese). | |
29 | 闫孟达, 杨任农, 左家亮, 等. 基于深度学习的空空导弹多类攻击区实时解算[J]. 兵工学报, 2020, 41(12): 2466-2477. |
YAN M D, YANG R N, ZUO J L, et al. Real-time computing of air-to-air missile multiple capture zones based on deep learning[J]. Acta Armamentarii, 2020, 41(12): 2466-2477 (in Chinese). | |
30 | 胡东愿, 杨任农, 闫孟达, 等. 基于自编码网络的导弹攻击区实时计算方法[J]. 航空学报, 2020, 41(4): 323571. |
HU D Y, YANG R N, YAN M D, et al. Real-time calculation of missile launch envelope based on auto-encoder network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 323571 (in Chinese). |
/
〈 |
|
〉 |