ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Solid rocket motor pressure oscillations under lateral composite overloads
Received date: 2024-01-25
Revised date: 2024-02-21
Accepted date: 2024-03-20
Online published: 2024-04-03
Solid rocket motors often experience complex overload conditions during flight, and sudden internal ballistic lift or oscillations occur occasionally. To study the pressure characteristics in the combustion chamber of solid rocket motors under dynamic overload conditions, the relationship curves between overload and mass flow rate of the propellant combustion surface are obtained using the Greatrix burning rate enhancement model and the zero-dimensional internal ballistic model considering the combustion surface recession. Based on the relationship, simulation of the internal flow field for a cylindrical cone bore charge is carried out under composite overload. The effects of lateral overload acceleration, lateral vibration and vibration frequency on the dynamic characteristics of the motor and vortex flow are investigated. The results show that with the increase of lateral overload acceleration and lateral vibration, the equilibrium pressure rises and pressure oscillation amplitude in the combustion chamber increases, and the lateral overload acceleration can increase the pressure amplitude and equilibrium pressure by 0.02% and 0.35%, respectively, with per 1g increase in acceleration at the working pressure of 10.54 MPa. As the lateral vibration frequency rises from 7 to 320 Hz, the amplitude of pressure oscillation decreases. But it is amplified by resonance near the intrinsic frequency of the combustion chamber acoustic cavity, and the first-order resonance (160 Hz) raises the amplitude of the pressure from 0.16% to 0.30%, which is twice the original amplitude. When the composite overload frequency resonates with the combustion chamber acoustic cavity, the energy transfer from the propellant surface into the combustion chamber is more orderly.
Shidi AI , Junwei LI , Zhongliang TIAN , Lei HAN , Ningfei WANG . Solid rocket motor pressure oscillations under lateral composite overloads[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 130233 -130233 . DOI: 10.7527/S1000-6893.2024.30233
1 | 唐金兰, 刘佩进. 固体火箭发动机原理[M]. 北京: 国防工业出版社, 2013. |
TANG J L, LIU P J. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 2013 (in Chinese). | |
2 | 李桢. 横向过载下固体火箭发动机工作过程研究[D]. 长沙: 国防科学技术大学, 2005. |
LI Z. Study on working process of solid rocket motor under lateral overload[D]. Changsha: National University of Defense Technology, 2005 (in Chinese). | |
3 | 崔立堃. 过载状态下固体火箭发动机内流场数值计算[J]. 战术导弹技术, 2017(3): 98-103. |
CUI L K. Numerical simulation of flow field in the solid rocket motor under overload conditions[J]. Tactical Missile Technology, 2017(3): 98-103 (in Chinese). | |
4 | 张为华, 曹泰岳, 万章吉. 固体火箭发动机旋转对燃速的影响[J]. 航空动力学报, 1994, 9(1): 67-70. |
ZHANG W H, CAO T Y, WAN Z J. Effect of solid rocket motor rotation on combustion velocity[J]. Journal of Aerospace Power, 1994, 9(1): 67-70 (in Chinese). | |
5 | 李翔. 发动机过载试验技术研究[J]. 航空兵器, 2008, 15(1): 34-37. |
LI X. Research on motor overload test technology[J]. Aero Weaponry, 2008, 15(1): 34-37 (in Chinese). | |
6 | 张翔宇, 高波, 甘晓松, 等. 飞行过载对固体火箭发动机不稳定燃烧的影响[J]. 宇航学报, 2019, 40(8): 972-976. |
ZHANG X Y, GAO B, GAN X S, et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics, 2019, 40(8): 972-976 (in Chinese). | |
7 | WU Y, HE G Q, SUN Z P, et al. Experiment study of effects induced by overload on SRM performance[J]. Journal of Solid Rocket Technology, 2010, 33(5): 511-514. |
8 | 苗琳. 过载与旋转对SRM内两相流场影响数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
MIAO L. Numerical analysis of the influence of overload and rotation on two-phase flow field in SRM[D]. Harbin: Harbin Engineering University, 2018 (in Chinese). | |
9 | 那旭东, 夏智勋, 马立坤, 等. 长时间小过载情况下固体火箭发动机两相流流场数值模拟[J]. 固体火箭技术, 2018, 41(6): 694-701. |
NA/NUO) X D, XIA Z X, MA L K, et al. Numerical simulation of two-phase flow field under low acceleration with long operation time conditions for solid rocket motor[J]. Journal of Solid Rocket Technology, 2018, 41(6): 694-701 (in Chinese). | |
10 | 顾兴鹏, 李军伟, 乔文生, 等. 固相颗粒在C1xb固体火箭发动机中的运动规律[J]. 兵工学报, 2022, 43(3): 489-502. |
GU X P, LI J W, QIAO W S, et al. Motion trajectory of solid particles in C1xb solid rocket motor[J]. Acta Armamentarii, 2022, 43(3): 489-502 (in Chinese). | |
11 | MALLOUPPAS G, VAN WACHEM B. Large eddy simulations of turbulent particle-laden channel flow[J]. International Journal of Multiphase Flow, 2013, 54: 65-75. |
12 | MASON D R, MORSTADT R, CANNON S M, et al. Pressure oscillations and structural vibrations in space shuttle RSRM and ETM-3 motors: AIAA-2004-3898 [R]. Reston: AIAA, 2004 |
13 | CAVALLINI E, FAVINI B, CASTELLI M, et al. VEGA launch vehicle dynamic loads due to solid propulsion ignition transients and pressure oscillations[C]∥Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016. |
14 | HAN L, LI J W, WANG Y B, et al. Study on combustion oscillation characteristics of micron aluminum particles[J]. Powder Technology, 2021, 394: 782-790. |
15 | 刘中兵,郜伟伟. 固体发动机飞行横向过载下绝热层烧蚀探究[J]. 固体火箭技术, 2018, 41(4): 37-42. |
LIU Z B, GAO W W, et al. Insulation ablation of solid rocket motors under flight transverse accelerations [J]. Journal of Solid Rocket Technology, 2018, 41(4): 37-42 (in Chinese). | |
16 | 吴雄岗, 李笑江, 宋桂贤, 等. 铝粉粒径对改性双基推进剂燃烧性能的影响[J]. 火炸药学报, 2010, 33(3): 80-83. |
WU X G, LI X J, SONG G X, et al. Effects of aluminum powder diameters on the combustion performance of CMDB propellant[J]. Chinese Journal of Explosives & Propellants, 2010, 33(3): 80-83 (in Chinese). | |
17 | LAURETI M, ROSSI G, FAVINI B. Correction: Aeroacoustics of aft-finocyl solid rocket motors[C]∥Proceedings of the 2018 Joint Propulsion Conference. Reston: AIAA, 2018. |
18 | CROWE C, WILLOUGHBY P. Effect of spin on the internal ballistics of a solid propellant motor[C]∥Proceedings of the 3rd and 4th Aerospace Sciences Meeting. Reston: AIAA, 1966. |
19 | WILLOUGHBY P G, CROWE C T, BAKER K L. A photographic and analytic study of composite propellant combustion in an acceleration field[J]. Journal of Spacecraft and Rockets, 1971, 8(4): 310-317. |
20 | GREATRIX D. Acceleration-based combustion augmentation modelling for noncylindrical grain solid rocket motors[C]∥Proceedings of the 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
21 | GREATRIX D R. Powered flight: The engineering of aerospace propulsion[M]. London: Springer-Verlag, 2012: 371-373. |
22 | 官典, 李世鹏, 刘筑, 等. 横向过载对固体火箭发动机推进剂点火建压过程的影响[J]. 兵工学报, 2021, 42(9): 1877-1887. |
GUAN D, LI S P, LIU Z, et al. Influence of lateral acceleration on ignition transients of solid rocket motor[J]. Acta Armamentarii, 2021, 42(9): 1877-1887 (in Chinese). | |
23 | 田忠亮, 李军伟, 贺业, 等. 横向过载下锥孔三维药柱的内弹道特性[J]. 兵工学报, 2023, 44(7): 1896-1907. |
TIAN Z L, LI J W, HE Y, et al. Analysis of interior ballistic characteristics of conical three-dimensional charge column under lateral overload[J]. Acta Armamentarii, 2023, 44(7): 1896-1907 (in Chinese). | |
24 | 覃生福, 李军伟, 张智慧, 等. 旋转对固体火箭发动机两相流点火过程影响仿真研究[J]. 航空动力学报, 2022, 37(7): 13. |
QIN S F, LI J W, ZHANG Z H, et al. Simulation study on the influence of spin on ignition process of two-phase in solid rocket motor[J]. Journal of Aerospace Power, 2022, 37(7): 13 (in Chinese). | |
25 | 游艳峰, 吴治昌, 张雷岳, 等. 大过载对固体火箭发动机粒子阻尼的影响[J]. 推进技术, 2022, 43(4): 210087. |
YOU Y F, WU Z C, ZHANG L Y, et al. Large overload effects on particle damping in SRM[J]. Journal of Propulsion Technology, 2022, 43(4): 210087 (in Chinese). | |
26 | 苏万兴. 大长径比固体火箭发动机不稳定燃烧预示及抑制方法研究[D]. 北京: 北京理工大学, 2015. |
SU W X. Study on prediction and suppression of unstable combustion of solid rocket motor with large length-diameter ratio[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese). | |
27 | 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478. |
LIU C Q. Liutex-third generation of vortex definition and identification methods?[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478 (in Chinese). | |
28 | 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. |
KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179 (in Chinese). | |
29 | LI Y J, HONG K, ZHOU C Y, et al. Vibration energy transfer in a forced oscillation fluidized bed[J]. Chemical Engineering Journal, 2023, 478: 147532. |
30 | 洪志亮, 薛力, 付怡磊, 等. 流-声-固耦合诱发结构振动及其抑制的实验研究[J]. 航空学报, (2024-02-07) [2024-03-15]. . |
HONG Z L, XUE L, FU Y L, et al. Experimental investigation on structural vibration induced by fluid-acoustic-structure coupling and its suppression [J]. Acta Aeronautica et Astronautica Sinica, (2024-02-07) [2024-03-15]. (in Chinese). | |
31 | CHEN L J, GAO Y, WANG D P, et al. Numerical simulation on acoustic mode and pressure-oscillation decay in finocyl-and axil-grain combustion chambers[J]. Aerospace Science and Technology, 2020, 107: 106351. |
/
〈 |
|
〉 |