Reviews

Overview of wind tunnel test research on tiltrotor aircraft

  • Weiguo ZHANG ,
  • Min TANG ,
  • Jie WU ,
  • Xianmin PENG ,
  • Guichuan ZHANG ,
  • Bowen NIE ,
  • Liangquan WANG ,
  • Chaoqun LI
Expand
  • 1.State Key Laboratory of Aerodynamics,Mianyang  621000,China
    2.Low Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China

Received date: 2024-01-08

  Revised date: 2024-01-26

  Accepted date: 2024-03-21

  Online published: 2024-03-29

Supported by

National Level Project

Abstract

Tiltrotor aircraft is a significant trend in the development of the next generation of rotorcraft. It integrates the advantages of rotorcraft and fixed-wing aircraft, but also introduce more complex problems in terms of aerodynamics, structural dynamics, flight dynamics, and aeroelastic coupling. The wind tunnel experiment is an important technical method to understand and investigate the key aerodynamic, structural, and flight issues of tiltrotors. This paper give a comprehensive overview of a large number of wind tunnel tests in the development process of tiltrotor aircraft in China and other countries, and provides various types of test simulation criteria, equipment and facilities, typical results, and main conclusions of tests for tiltrotor aircraft rotors and corresponding airfoils, rotor/wing aerodynamic interference, rotor/wing aeroelastic stability, virtual flight, etc. Considering the research and development requirements, this paper also proposes suggestions for the development of wind tunnel testing technology for tiltrotor aircraft in China.

Cite this article

Weiguo ZHANG , Min TANG , Jie WU , Xianmin PENG , Guichuan ZHANG , Bowen NIE , Liangquan WANG , Chaoqun LI . Overview of wind tunnel test research on tiltrotor aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(9) : 530114 -530114 . DOI: 10.7527/S1000-6893.2024.30114

References

1 倪先平. 直升机手册[M]. 北京: 航空工业出版社, 2003: 187-189.
  NI X P. Helicopter manual[M]. Beijing: Aviation Industry Press, 2003: 187-189 (in Chinese).
2 王适存. 面向 21 世纪的直升机发展[J]. 南京航空航天大学学报199729(6): 7-12.
  WANG S C. Helicopter development facing the 21st century[J]. Journal of Nanjing University of Aeronautics & Astronautics199729(6): 7-12 (in Chinese).
3 FOSTER M. Evolution of tiltrotor aircraft[C]∥AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2013.
4 邓景辉 .高速直升机关键技术与发展[J].航空学报202445(9): 529085.
  DENG J H. Key technologies and development for high- speed helicopters [J]. Acta Aeronautica et Astronautica Sinica202445(9): 529085 (in Chinese).
5 徐敏. 倾转旋翼机的发展与关键技术综述[J]. 直升机技术2003(2): 40-44.
  XU M. Summary of development and key technologies of tilt-rotor aircraft[J]. Helicopter Technique2003(2): 40-44 (in Chinese).
6 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报201547(2): 173-179.
  WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics201547(2): 173-179 (in Chinese).
7 EHINGER R, GEHLER C, ALLEN S. Bell V-280 Valor: A JMR-TD program update[C]∥Proceedings of the 73rd Annual Forum of the American Helicopter Society. 2017.
8 HOUSTON S S. The Gyrodyne—A forgotten high performer?[J]. Journal of the American Helicopter Society200752(4): 382-391.
9 FELKER F F, SIGNOR D B, YOUNG L A, et al. Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419 [R]. Moffett Field: NASA Ames Research Center, 1987.
10 MAISEL M, GIULIANETTI D, DUGAN D C. The history of the XV-15 tilt rotor research aircraft: From concept to flight: NASA/SP-2000-4517 [R]. Moffett Field: NASA Ames Research Center, 2000.
11 THOMASON T. Bell-Boeing JVX tilt rotor program - Flight test program[C]∥Proceedings of the 2nd Flight Testing Conference. Reston: AIAA, 1983.
12 POLAK D R, REHM W, GEORGE A R. Effects of an image plane on the tiltrotor fountain flow[J]. Journal of the American Helicopter Society200045(2): 90-96.
13 YOUNG L A, LILLIE D, MCCLUER M, et al. Insights into airframe aerodynamics and rotor-on-wing interactions from a 0.25-scale tiltrotor wind tunnel model[C]∥AHS International Technical Specialist Meeting on Aerodynamics, Acoustics, and Test and Evaluation. 2002.
14 FELKER F F. Wing download results from a test of a 0.658-scale V-22 rotor and wing[J]. Journal of the American Helicopter Society199237(4): 58-63.
15 BARTIE K, ALEXANDER H, MCVEIGH M, et al. Hover performance tests of baseline metal and advanced technology blade (ATB) rotor systems for the XV-15 tilt rotor aircraft: NASA-CR-177436 [R]. Washington, D.C.: NASA, 1986.
16 ALEXANDER H R, MAISEL M D, GIULIANETTID J. The development of advanced technology blades for tiltrotor aircraft[R]. Moffett Field: NASA Ames Research Center, 1986.
17 ACREE C W J. Assessment of JVX proprotor performance data in hover and airplane-mode flight conditions: NASA/TM-2016-219070[R]. Moffett Field: NASA Ames Research Center, 2016.
18 PIATAK D J, KVATERNIK R G, NIXON M W, et al. A wind-tunnel parametric investigation of tiltrotor whirl-flutter stability boundaries[J]. Journal of the American Helicopter Society202247(2): 134-144.
19 KOTTAPALLI S B, RUSSELL C R, ACREE C W, et al. Aeroelastic stability analysis of a full-scale isolated proprotor on the tiltrotor test rig[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
20 颜大椿. 实验流体力学[M]. 北京: 高等教育出版社, 1992: 27-28.
  YAN D C. Experimental fluid mechanics[M]. Beijing: Higher Education Press, 1992: 27-28 (in Chinese).
21 黄明其. 直升机风洞试验[M]. 北京: 国防工业出版社, 2014: 31-35.
  HUANG M Q. Helicopter wind tunnel test[M]. Beijing: National Defense Industry Press, 2014: 31-35 (in Chinese).
22 ACREE JR C W. JVX proprotor performance calculations and comparisons with hover and airplane-mode test data: NASA/TM-2009-215380[R]. Washington, D.C.: NASA, 2009.
23 HELF S, BROMAN E, GATCHEL S, et al. Full scale hover test of a 25 foot tilt rotor: NASA-CR-114626 [R]. Washington, D.C.: NASA, 1973.
24 FELKER F F, BETZINA M D, SIGNOR D B. Performance and loads data from a hover test of a full-scale XV-15 rotor: NASA-TM-86833 [R]. Moffett Field: NASA Ames Research Center, 1985.
25 ACREE JR C W, SHEIKMAN A L. Development and initial testing of the tiltrotor test rig[C]∥AHS (American Helicopter Society) Annual Forum and Technology Display. 2018.
26 YOUNG L A. Tilt rotor aeroacoustic model (TRAM): A new rotorcraft research facility[C]∥AHS International Meeting on Advanced Rotorcraft Technology and Disaster Relief. 1998.
27 BETZINA M D. Rotor performance of an isolated full-scale XV-15 tiltrotor in helicopter mode[C]∥Proceedings of the AHS Aerodynamics, Acoustics, and Test and Evaluation Meeting. 2002.
28 KITAPLIOGLU C. Blade-vortex interaction noise of a full-scale XV-15 rotor tested in the NASA Ames 80- by 120-foot wind tunnel[C]∥American Helicopter Society 56th Annual Forum, 1999.
29 LEBRUN F, MUNIER D, DECOURS J. ONERA S1MA wind tunnel testing capabilities of a modern tilt rotor[C]∥AHS 71st Annual Forum. 2015.
30 MCLUER M S, JOHNSON J L. Full-span tiltrotor aeroacoustic model (FS TRAM) overview and initial testing[C]∥American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Specialist Meeting. 2002.
31 STABELLINI A, VERNA A, RAGAZZI A, et al. First NICETRIP powered wind tunnel tests successfully completed in DNW-LLF[C]∥AHS International Forum 70th. 2014.
32 LEBRUN F, CS O. Wind tunnel high speed powered tests of the ERICA tilt rotor model in S1MA - NICETRIP project [EB/OL]. (2015)[2024-01-05].
33 SCHNEIDER O, PRZYBILLA M, BREHL E, et al. Preparation and execution of the NICETRIP low- and high-speed wind tunnel tests[J]. CEAS Aeronautical Journal20167(2): 167-184.
34 NANNONI F, GIANCAMILLI G, CICALè M. ERICA: The European advanced tiltrotor[C]∥27th European Rotorcraft Form. 2001.
35 ALLI P. Erica: The European tiltrotor. Design and critical technology projects[C]∥Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
36 GIBERTINI G, ZANOTTI A, CAMPANARDI G, et al. Wind-tunnel tests of the ERICA tiltrotor optimised air-intake[J]. The Aeronautical Journal2018122(1251): 821-837.
37 李尚斌, 江露生, 林永峰. 倾转旋翼机悬停状态气动干扰分析[J]. 工程力学202441(3): 232-240.
  LI S B, JIANG L S, LIN Y F. The analysis of aerodynamic interference of tilt rotor aircraft in hover[J]. Engineering Mechanics202441(3): 232-240 (in Chinese).
38 李春华. 时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D]. 南京: 南京航空航天大学, 2007: 85-98.
  LI C H. Modeling on time-accurate free wake method and investigation on aerodynamic characteristics of rotor and tiltrotor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 85-98 (in Chinese).
39 陈平剑, 林永峰, 黄水林. 倾转旋翼机旋翼/机翼气动干扰的试验研究[J]. 直升机技术2008(3): 107-115.
  CHEN P J, LIN Y F, HUANG S L. Experimental study on rotor/wing aerodynamic interaction for tiltrotor aircraft[J]. Helicopter Technique2008(3): 107-115 (in Chinese).
40 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报201833(12): 2900-2912.
  ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power201833(12): 2900-2912 (in Chinese).
41 NASA. Advancement of proprotor technology. Task 2: Wind-tunnel test results: NASA-CR-114363[R]. Washington, D.C.: NASA, 1971.
42 MAGEE J, ALEXANDER H. V/STOL tilt rotor aircraft study: wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing model 222 tilt rotor aircraft: NASA-CR-114664 [R]. Washington, D.C.: NASA, 1973.
43 ACREE JR C W, PEYRAN R J, JOHNSON W. Rotor design options for improving XV-15 whirl-flutter stability margins[J]. Journal of the American Helicopter Society200146(2): 87-95.
44 MARR R L, NEAL G T. Assessment of model testing of a tilt-proprotor VTOL aircraft[C]∥Vertical Flight Society Annual Forum & Technology Display-Forum. 1972.
45 POPELKA D, SHEFFLER M, BILGER J. Correlation of test and analysis for the 1/5-scale V-22 aeroelastic model[J]. Journal of the American Helicopter Society198732(2): 21-33.
46 SETTLE T BEN, KIDD D L. Evolution and test history of the V-22 0.2-scale aeroelastic model[J]. Journal of the American Helicopter Society199237(1): 31-45.
47 ACREE C W. Effects of V-22 blade modifications on whirl flutter and loads[J]. Journal of the American Helicopter Society200550(3): 269.
48 KVATERNIK R, KOHN J. An experimental and analytical investigation of proprotor whirl flutter: NASA-TP-1047 [R]. Washington, D.C.: NASA, 1977.
49 POPELKA D, LINDSAY D, PARHAM T, et al. Results of an aeroelastic tailoring study for a composite tiltrotor wing[J]. Journal of the American Helicopter Society199742(2): 126-136.
50 NARAYANAN-NAMPY S, SMITH E. Extension-twist coupled tiltrotor blades using flexible matrix composites[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
51 NIXON M W, KVATERNIK R G, SETTLE T BEN. Tiltrotor vibration reduction through higher harmonic control[J]. Journal of the American Helicopter Society199843(3): 235-245.
52 KRESHOCK A R, THORNBURGH R, WILBUR M. Overview of the TiltRotor aeroelastic stability testbed[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
53 IVANCO T G, KANG H, KRESHOCK A R, et al. Generalized predictive control for active stability augmentation and vibration reduction on an aeroelastic tiltrotor model[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
54 董凌华. 倾转旋翼/机翼气弹耦合动力学研究[D]. 南京: 南京航空航天大学, 2011: 69-75.
  DONG L H. Research on aeroelastic dynamics of tiltrotor-wing coupled system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 69-75 (in Chinese).
55 董凌华, 杨卫东, 张呈林. 倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究[J]. 振动工程学报200821(5): 465-470.
  DONG L H, YANG W D, ZHANG C L. Experiment on aeroelastic characteristics of tiltrotor aircraft in transition flight[J]. Journal of Vibration Engineering200821(5): 465-470 (in Chinese).
56 THOMASON T. The Bell Helicopter XV-3 and XV-15 experimental aircraft - Lessons learned[C]∥Proceedings of the Aircraft Design, Systems and Operations Conference. Reston: AIAA, 1990.
57 WEIBERG J A, MAISEL M D. Wind-tunnel tests of the XV-15 tilt rotor aircraft: NASA-TM-81177 [R]. Washington, D.C.: NASA, 1980.
58 KOENIG D G, FIELD M, MORELLI J P. Full-scale prop-rotor stability tests on the XV3 at high advance ratios: NASA/TM-2015-218812[R]. Moffett Field: NASA Ames Research Center, 2015.
59 DUGAN D C, ERHART R G, SCHROERS L G. The XV-15 tilt rotor research aircraft: NASA-TM-81244[R]. Washington, D.C.: NASA, 1980.
60 Young L A, Yamauchi G K, Booth E R JR, et al. Overview of the testing of a small-scale proprotor[C]∥American Helicopter Society 55th Annual Forum. 1999.
61 DE BRUIN A C, SCHNEIDER O. A discussion of measured static and dynamic rotor loads during testing of the ERICA tilt-wing rotorcraft configuration in DNW-LLF wind tunnel[C]∥40th European Rotorcraft Forum. 2014.
62 彭先敏, 黄明其, 章贵川, 等. 风洞试验中旋翼的智能控制技术[J]. 南京航空航天大学学报201951(2): 251-256.
  PENG X M, HUANG M Q, ZHANG G C, et al. Intelligent control technology of helicopter rotor in wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics201951(2): 251-256 (in Chinese).
63 章贵川, 彭先敏, 车兵辉, 等. 共轴刚性旋翼试验自动配平技术研究[J]. 南京航空航天大学学报201951(2): 226-231.
  ZHANG G C, PENG X M, CHE B H, et al. Research on automatic trim technology of coaxial rigid rotor test[J]. Journal of Nanjing University of Aeronautics & Astronautics201951(2): 226-231 (in Chinese).
64 杨军, 吴希明, 凡永华, 等. 倾转旋翼机飞行控制[M]. 北京: 航空工业出版社, 2006: 36-74.
  YANG J, WU X M, FAN Y H, et al. Flight control of tilt-rotor craft[M]. Beijing: Aviation Industry Press, 2006: 36-74 (in Chinese).
65 LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2000.
66 SEDDON J, NEWMAN S. Basic helicopter aerodynamics [M]. 3rd ed. New York: John Wiley & Sons, Ltd, 2011.
67 ACREE C W. Vertical climb testing of a full-scale proprotor on the tiltrotor test rig[C]∥Transformative Vertical Flight 2020. 2020.
68 EDENBOROUGH H, GAFFEY T, WEIBERG J. Analyses and tests confirm design of proprotor aircraft[C]∥AIAA 4th Aircraft Design, Flight Test, and Operations Meeting. Reston: AIAA, 1972.
69 FELKER F F, SIGNOR D B, YOUGH L A, et al. Wing force and surface pressure data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419 [R]. Washington, D.C.: NASA, 1987.
70 NARRAMORE J. Airfoil design, test and evaluation for the V-22 tilt rotor vehicle[C]∥43rd Annual Forum of the American Helicopter Society. 1987.
71 GARDAREIN P, BASSEZP, BEROUL F. Eurofar rotor aerodynamic tests[C]∥18th European Rotorcraft Forum. 1992.
72 NARRAMORE J. Advanced technology airfoil development for the XV-15 tilt-rotor vehicle[C]∥AIAA and NASA Ames VSTOL Conference. Reston: AIAA, 1981.
73 BEAUMIER P, DECOURS J, LEFEBVRE T. Aerodynamic and aero-acoustic design of modern tilt-rotors: The Onera experience[C]∥Congress of the International Council of the Aeronautical. 2018.
74 POISSON-QUINTON P H, COOK W L. A summary of wind tunnel research on tilt rotors from hover to cruise flight[R]. Washington, D.C.: NASA, 1972.
75 WELLMAN B. Advanced technology blade testing on the XV-15 tilt rotor research aircraft[C]∥AHS Annual Forum. 1992.
76 HOAD D, CONNER D A, RUTLEDGE C K. Acoustic flight test experience with the XV-15 tiltrotor aircraft with the advanced technology blade (ATB)[C]∥14th AIAA Aeroacoustics Conference. Reston: AIAA, 1992.
77 HARRIS F D. Hover performance of isolated proprotors and propellers—Experimental data: NASA/CR-2017-219486 [R]. Moffett Field: NASA Ames Research Center, 2017.
78 ACREE JR C W. Calculation of JVX Proprotor performance and comparisons with hover and high-speed test data[C]∥AHS Specialist’s Conference on Aeromechanics. 2008.
79 FELKER F F, MAISEL M D, BETZINA M D. Full-scale tilt-rotor hover performance[J]. Journal of the American Helicopter Society198631(2): 10-18.
80 GIBERTINI G, AUTERI F, CAMPANARDI G, et al. Wind-tunnel tests of a tilt-rotor aircraft[J]. The Aeronautical Journal2011115(1167): 315-322.
81 DE GREGORIO F, STEILING D, BENINI E, et al. ERICA tiltrotor airframe wake characterization[C]∥41st European Rotorcraft Forum. 2015.
82 BARLA C, FAVIER D, RONDOT C, et al. PIV measurements of the vortical wake behind tilt-rotor blades[C]∥13th International Symposium on Application of Laser Techniques to Fluid Mechanics. 2006.
83 YAMAUCHI G K, BURLEY C L, MERCKER E, et al. Flow measurements of an isolated model tilt rotor[C]∥Annual Forum Proceedings-American Helicopter Society. 199955(1): 891-909.
84 FELKER F F, LIGHT J S. Aerodynamic interactions between a rotor and wing in hover[J]. Journal of the American Helicopter Society198833(2): 53-61.
85 FELKER F F, SHINODA P R, SHEEHY H F. Wing force and surface pressure data from a hover test of a 0.658-scale: NASA-TM-102244[R]. Washington, D.C.: NASA, 1990.
86 JOHNSON W. Influence of wake models on calculated tiltrotor aerodynamics[C]∥AHS Aerodynamics, Acoustics and Test and Evaluation Technical Specialist Meeting. 2022.
87 FELKER F F. A review of tilt rotor download research[R]. Washington, D.C.: NASA, 1988.
88 FELKER F F, LIGHT J S. Rotor/wing aerodynamic in-teractions in hover: NASA-TM-88255[R]. Washing-ton, D.C.: NASA, 1986.
89 FELKER F. Results from a test of a 2/3-scale V-22 rotor and wing in the 40- by 80-foot wind tunnel[C]∥AHS Annual Forum. 1991.
90 FEJTEK I, ROBERTS L. Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover[J]. AIAA Journal199230(11): 2595-2603.
91 YOUNG L A, DERBY M R. Rotor/wing interactions in hover: NASA/TM-2002-211392[R]. Washington, D.C.: NASA, 2002.
92 MATOS C, REDDY U, KOMERATH N. Rotor wake/fixed wing interactions with flap deflection[C]∥American Helicopter Society 55th Annual Forum. 1999.
93 JOHNSON W, YAMAUCHI G, DERBY M, et al. Wind tunnel measurements and calculations of aerodynamic interactions between tiltrotor aircraft[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
94 YAMAUCHI G K, WADCOCK A J, DERBY M D, et al. V-22/ship/helicopter aerodynamic interaction phenomena (VSHAIP) wind tunnel test: CA 94035-1000 [R]. Moffett Field: NASA Ames Research Center, 2004.
95 SILVA M, YAMAUCHI G K, WADCOCK A J, et al. Wind tunnel measurements and calculations of aerodynamic interactions between helicopters and tiltrotors in a shipboard environment[C]∥American Helicopter Society 4th Decennial Specialist’s Conference on Aeromechanics. 2004.
96 JOHNSON W. Dynamics of tilting proprotor aircraft in cruise flight: NASA-TN-D-7677 [R]. Moffett Field: NASA Ames Research Center, 1974.
97 GAFFEY T M. The effect of positive pitch-flap coupling (negative δ3) on rotor blade motion stability and flapping[J]. Journal of the American Helicopter Society196914(2): 49-67.
98 YEAGER W T, KVATERNIK R G. A historical overview of aeroelasticity branch and transonic dynamics tunnel contributions to rotorcraft technology and development: NASA/TM-2001-211054[R]. Moffett Field: NASA Ames Research Center, 2001.
99 SUTHERLAND J R, TSAI F, DATTA A. Whirl flutter test of the Maryland tiltrotor rig: Swept-tip blades[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
100 TSAI F, SUTHERLAND J R, AKINWALE A, et al. Whirl flutter test of the Maryland tiltrotor rig: Overview[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
101 CHAMBERS J R. Modeling flight: The role of dynamically scaled free-flight models in support of NASA’s aerospace programs: NASA/SP-2009-575[R]. Washington, D.C.: NASA, 2010.
102 TOSTI L P. Longitudinal stability and control of a tilt-wing VTOL aircraft with rigid and flapping propeller blades: NASA-TN-D-1365 [R]. Washington, D.C.: NASA, 1962.
Outlines

/