special column

Control key technologies for high⁃performance permanent magnet direct drive servo system in spatial flexible cable

  • Feifei BU ,
  • Zhaopeng DONG ,
  • Deli ZHANG ,
  • Wenxin HUANG ,
  • Zhenyuan XU ,
  • Pengyu SUN
Expand
  • 1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.College of Mechanical & Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2024-01-29

  Revised date: 2024-02-21

  Accepted date: 2024-03-04

  Online published: 2024-03-19

Supported by

The Basic Research Business Fee Project for Central Universities(NT2023007);Graduate Research and Practice Innovation Project of Nanjing University of Aeronautics and Astronautics(xcxjh20230301)

Abstract

To meet the high-performance control requirements of the aerospace servo system, this paper proposes a current loop delay compensation strategy based on no-difference control to address the current loop delay issue in the permanent magnet direct drive servo system for space flexible tether. The design of the delay compensation loop suppresses the delay in the current loop, while the error corrector is designed to improve the current sampling accuracy, ensuring the accuracy of current prediction. To tackle the challenge of external complex disturbances, a disturbance suppression strategy combining disturbance observation with rotor position tracking is proposed, a novel outer loop controller based on internal model control theory is designed, and a differential structure is introduced into the observer to achieve lag-free disturbance observation. To address the issue of tension impact in flexible tether systems, a shock-resistant tension control strategy based on parameter adaptive regulator is proposed, achieving rapid and accurate tension adjustment through dynamic adjustment of tension regulator parameters. Finally, an experimental platform of the permanent magnet direct drive servo system for space flexible tether is successfully developed, and relevant experiments are conducted. Experimental results show that the proposed control strategy effectively eliminates the delay in the current loop, improves the dynamic and steady-state performance of the current loop; meanwhile, it can accurately estimate and compensate for external disturbances in real time, enhancing the disturbance rejection capability of the entire servo system.Results also show that this control strategy achieves the precise control of tether tension, preventing tension impact phenomena, thereby achieving high-performance control of the space flexible tether system using permanent magnet direct drive servo system.

Cite this article

Feifei BU , Zhaopeng DONG , Deli ZHANG , Wenxin HUANG , Zhenyuan XU , Pengyu SUN . Control key technologies for high⁃performance permanent magnet direct drive servo system in spatial flexible cable[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 630256 -630256 . DOI: 10.7527/S1000-6893.2024.30256

References

1 杨志达. 空间系绳用永磁电机张力伺服系统控制技术研究[D]. 南京: 南京航空航天大学, 2020: 1.
  YANG Z D. Research on control technology of permanent magnet motor tension servo system for space tether[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1 (in Chinese).
2 张得礼, 卜飞飞, 潘子昊, 等. 航天捕获拖曳伺服机构系绳张力峰均比抑制技术[J]. 航空动力学报202338(10): 2450-2459.
  ZHANG D L, BU F F, PAN Z H, et al. Peak-to-average ratio suppression technology of aerospace tension servo mechanism[J]. Journal of Aerospace Power202338(10): 2450-2459 (in Chinese).
3 潘子昊. 永磁电机空间系绳伺服机构高性能张力控制技术研究[D]. 南京: 南京航空航天大学, 2021: 1.
  PAN Z H. Research on high performance tension control technology for space rope servo mechanism of permanent magnet motor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1 (in Chinese).
4 WILSON J R. Orbital express: Rendezvous and renewal[J]. Aerospace America200846(3): 38-43.
5 WILSON J R. Satellite hopes ride on orbital express[J]. AEROSPACE AMERICA200745(2): 30-35.
6 GIBBS G, SACHDEV S. Canada and the International Space Station program: Overview and status[J]. Acta Astronautica200251(1-9): 591-600.
7 SALLABERGER C. Canadian space robotic activities[J]. Acta Astronautica199741(4-10): 239-246.
8 VISENTIN G, DIDOT F. Testing space robotics on the Japanese EST-VII satellite[J]. ESA bulletin. Bulletin ASE. European Space Agency199937(99): 61-65.
9 YOSHIDA K. Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit[J]. The International Journal of Robotics Research200322(5): 321-335.
10 冯吉根. 空间绳系组合体地面拖曳模拟技术研究[D]. 杭州: 浙江大学, 2017: 5.
  FENG J G. Research on ground tow simulation of the space tethered combination[D].Hangzhou: Zhejiang University, 2017: 5 (in Chinese).
11 洪训超. 空间柔性机械臂在轨捕获碰撞动力学分析[D]. 北京: 北京邮电大学, 2017: 2-3.
  HONG X C. The collision dynamics analysis of space flexible manipulator when performing on-orbit capture task[D].Beijing: Beijing University of Posts and Telecommunications, 2017: 2-3 (in Chinese).
12 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报201934(6): 1148-1160.
  BAO X H, LIU J W, SUN Y, et al. Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society201934(6): 1148-1160 (in Chinese).
13 FEI W Z, LUK P C K. Torque ripple reduction of a direct-drive permanent-magnet synchronous machine by material-efficient axial pole pairing[J]. IEEE Transactions on Industrial Electronics201259(6): 2601-2611.
14 张新华, 黄建, 张兆凯, 等. 大功率高性能航天伺服系统发展综述[J]. 导航定位与授时20174(1): 14-19.
  ZHANG X H, HUANG J, ZHANG Z K, et al. Review on the development of high-power high-performance aerospace servo system[J]. Navigation Positioning and Timing20174(1): 14-19 (in Chinese).
15 王班, 易琳, 郭吉丰. 空间绳网机器人的张力控制机构研制与性能研究[J]. 浙江大学学报(工学版)201549(10): 1974-1981.
  WANG B, YI L, GUO J F. Performance study and development of tether control mechanism for space tethered-net robot[J]. Journal of Zhejiang University (Engineering Science)201549(10): 1974-1981 (in Chinese).
16 MORI O, MATUNAGA S. Formation and attitude control for rotational tethered satellite clusters[J]. Journal of Spacecraft and Rockets200744(1): 211-220.
17 张凯楠. 两轴协同式位置-速度-张力协同测控系统[D]. 杭州: 杭州电子科技大学, 2019: 54.
  ZHANG K N. Two-axis coordinated position-speed-tension cooperative measurement and control system[D].Hangzhou: Hangzhou Dianzi University, 2019: 54 (in Chinese).
18 王瑞超. 流涎薄膜收卷机组张力控制技术研究[D]. 南京: 南京理工大学, 2013: 57.
  WANG R C. Study on tension control technology of salivation film winder[D].Nanjing: Nanjing University of Science and Technology, 2013: 57 (in Chinese).
19 王寿斌. 缠绕张力控制系统控制策略研究[D]. 济南: 济南大学, 2019: 87.
  WANG S B. Research on control strategy of winding tension control system[D].Jinan: University of Jinan, 2019: 87 (in Chinese).
20 OKADA K, SAKAMOTO T. An adaptive fuzzy control for web tension control system[C]∥ IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200). Piscataway: IEEE Press, 1998: 1762-1767.
21 王康, 张沛, 林云成, 等. 采样机械臂关节月表环境适应性设计[J]. 航天器环境工程201734(5): 482-489.
  WANG K, ZHANG P, LIN Y C, et al. Environmental adaptive design of joint for a lunar surface sampling arm[J]. Spacecraft Environment Engineering201734(5): 482-489 (in Chinese).
Outlines

/