Solid Mechanics and Vehicle Conceptual Design

Characterization and identification of gas turbine blade fracture faults based on broadband vibration

  • Minghui HU ,
  • Shaopeng LIU ,
  • Hao WANG ,
  • Chenyang LI ,
  • Weimin WANG ,
  • Zhinong JIANG
Expand
  • 1.State Key Laboratory of High-end Compressor and System Technology,Beijing University of Chemical Technology,Beijing  100029,China
    2.Key Laborotory of Engine Health Monitoring-Control and Networking of Ministry of Education,Beijing University of Chemical Technology,Beijing  100029,China
    3.Beijing Key Laboratory of Health Monitoringlf and Self-Recovery for High-End Mechanical Equipment,Beijing University of Chemical Technology,Beijing  100029,China
    4.China Ship Research and Development Academy,Beijing  100101,China

Received date: 2024-01-03

  Revised date: 2024-01-30

  Accepted date: 2024-03-18

  Online published: 2024-03-19

Supported by

the Key Program of National Natural Science Foundation of China(92160203);Young Elite Scientists Sponsorship Program by CAST(2022-JCJQ-QT-059);National Postdoctoral Program for Innovation Talents Support Program(BX20180031)

Abstract

Aiming at the technical difficulty of timely and effective warning and identification of gas turbine rotor blade fracture faults, this paper conducts a three-pronged research. Starting from the blade fracture fault mechanism, we analyse the modulation effect of the unbalanced rotor on the wake pressure, establish the blade excitation force model and the forced vibration response model of the casing under the action of the excitation force, and solve the wide-frequency vibration response of the dynamic blade fracture excitation. On this basis, a blade fracture fault sensitive characteristic is constructed, and a fault alarm model based on the Optimized K-Nearest Neighbor (O-KNN) is proposed to realize the timely alarm analysis of the blade fracture fault. Furthermore, the blade fracture fault localization parameters are proposed, and the accurate localization of the fracture fault is realized by comparing the blade characteristic parameters at all stages. In summary, a broadband vibration characteristic driven gas turbine blade fracture fault identification method is constructed, and a test case on a certain type of gas turbine verifies the effectiveness of the fault sensitive characteristics and the identification method.

Cite this article

Minghui HU , Shaopeng LIU , Hao WANG , Chenyang LI , Weimin WANG , Zhinong JIANG . Characterization and identification of gas turbine blade fracture faults based on broadband vibration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(20) : 230098 -230098 . DOI: 10.7527/S1000-6893.2024.30098

References

1 MADHAV S, ROY M. Failure analysis of compressor blades of aero-engine[J]. Journal of Failure Analysis and Prevention202222(3): 968-982.
2 马艳红, 梁智超, 王桂华, 等. 航空发动机叶片丢失问题研究综述[J]. 航空动力学报201631(3): 513-526.
  MA Y H, LIANG Z C, WANG G H, et al. Review on the blade loss of aero-engine[J]. Journal of Aerospace Power201631(3): 513-526 (in Chinese).
3 洪亮, 臧朝平, 李全坤, 等. 模拟转子叶片丢失后外传载荷影响特性研究[J]. 推进技术202344(10): 181-190.
  HONG L, ZANG C P, LI Q K, et al. Effects of external load on simulated rotor blade off event[J]. Journal of Propulsion Technology202344(10): 181-190 (in Chinese).
4 洪杰, 郝勇, 张博, 等. 叶片丢失激励下整机力学行为及其动力特性[J]. 航空发动机201440(2): 19-23.
  HONG J, HAO Y, ZHANG B, et al. Mechanical behaviors and dynamic characteristics of turbofan engine due to fan blade off[J]. Aeroengine201440(2): 19-23 (in Chinese).
5 洪杰, 栗天壤, 王永锋, 等. 叶片丢失激励下航空发动机柔性转子系统的动力学响应[J]. 航空动力学报201833(2): 257-264.
  HONG J, LI T R, WANG Y F, et al. Dynamic response of the aero-engine flexible rotor system under the blade-off[J]. Journal of Aerospace Power201833(2): 257-264 (in Chinese).
6 SINHA S K. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads[J]. Journal of Sound and Vibration2013332(9): 2253-2283.
7 WANG N F, LIU C, JIANG D X. Prediction of transient vibration response of dual-rotor-blade-casing system with blade off[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(14): 5164-5176.
8 WANG N F, LIU C, JIANG D X, et al. Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing[J]. Mechanical Systems and Signal Processing2019118: 61-77.
9 XIE J S, LIU J, CHEN J L, et al. Blade damage monitoring method base on frequency domain statistical index of shaft’s random vibration[J]. Mechanical Systems and Signal Processing2022165: 108351.
10 FORBES G L, RANDALL R B. Estimation of turbine blade natural frequencies from casing pressure and vibration measurements[J]. Mechanical Systems and Signal Processing201336(2): 549-561.
11 江志农, 王钟, 胡明辉, 等. 燃气轮机动叶片断裂故障振动特征及其识别方法研究[J]. 机电工程202138(8): 935-943.
  JIANG Z N, WANG Z, HU M H, et al. Vibration feature and identification methods of gas turbine rotor blade fracture fault[J]. Journal of Mechanical & Electrical Engineering202138(8): 935-943 (in Chinese).
12 江志农, 党伟, 胡明辉, 等. 基于OCSVM的燃气轮机叶片断裂故障诊断方法[J]. 机械设计与制造2022(12): 1-5, 10.
  JIANG Z N, DANG W, HU M H, et al. Gas turbine fault diagnosis method of blade fracture based on OCSVM[J]. Machinery Design & Manufacture2022(12): 1-5, 10 (in Chinese).
13 党伟, 胡明辉, 江志农, 等. 燃气轮机压气机动叶片断裂故障振动特征及其诊断方法[J]. 振动与冲击202140(10): 7-19.
  DANG W, HU M H, JIANG Z N, et al. Vibration features and diagnosis methods for rotor blade fracture in a gas turbine’s compressor[J]. Journal of Vibration and Shock202140(10): 7-19 (in Chinese).
14 FENG K, XIAO Y, LI Z Z, et al. Gas turbine blade fracturing fault diagnosis based on broadband casing vibration[J]. Measurement2023214: 112718.
15 LISKA J, VASICEK V, JAKL J. A novel method of impeller blade monitoring using shaft vibration signal processing[J]. Sensors202222(13): 4932.
16 GUBRAN A A, SINHA J K. Shaft instantaneous angular speed for blade vibration in rotating machine[J]. Mechanical Systems and Signal Processing201444(1-2): 47-59.
17 ABDELRHMAN A M, LEE G L, LEONG M L, et al. Early rotor blade fault detection in multi-stage rotor system based on wavelet analysis[C]∥46th Annual Review of Progress in Quantitative Nondestructive Evaluation. New York:ASME,2019.
18 ZHANG J Q, CHEN Y G, LI N, et al. A denoising method of micro-turbine acoustic pressure signal based on CEEMDAN and improved variable step-size NLMS algorithm[J]. Machines202210(6): 444.
19 CAO J H, YANG Z B, TIAN S H, et al. Time delay-based spectrum reconstruction for nonuniform and sub-Nyquist sampling in blade tip timing[J]. Mechanical Systems and Signal Processing2023200: 110552.
20 LIN J, HU Z, CHEN Z S, et al. Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring[J]. Mechanical Systems and Signal Processing201681: 250-258.
21 DONG J N, LI H K, CAO H W, et al. An improved blade tip timing dual-probe method of synchro-resonance frequency identification for blade damage detection[J]. Mechanical Systems and Signal Processing2023203: 110731.
22 MURRAY W L, KEY N L. Detection of rotor forced response vibrations using stationary pressure transducers in a multistage axial compressor[J]. International Journal of Rotating Machinery20152015: 198534.
23 SOEDEL W. Vibrations of shells and plates[M]. New York: Marcel Dekker Inc, 1981.
24 盛兆顺, 尹琦岭. 设备状态监测与故障诊断技术及应用 [M]. 北京: 化学工业出版社, 2003.
  SHENG Z S, YIN Q L. Equipment status monitoring and fault diagnosis technology and application[M]. Beijing: Chemical Industry Press, 2003 (in Chinese).
25 COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory196713(1): 21-27.
26 SARMADI H, KARAMODIN A. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class KNN rule for structural health monitoring under environmental effects[J]. Mechanical Systems and Signal Processing2020140: 106495.
Outlines

/