Reviews

Research progress on fluid structure interaction of bionic flexible flapping wing UAV

  • Wenqing YANG ,
  • Yueyang GUO ,
  • Yuanbo DONG ,
  • Dong XUE ,
  • Jianlin XUAN
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
    2.Research & Development Institute,Northwestern Polytechnical University in Shenzhen,Shenzhen  518063,China

Received date: 2024-01-02

  Revised date: 2024-01-24

  Accepted date: 2024-03-18

  Online published: 2024-03-19

Supported by

National Natural Science Foundation of China(52275293);Guangzhou Basic and Applied Basic Research Foundation(2023A1515010774)

Abstract

Biomimetic flapping-wing air vehicles are Unmanned Air Vehicles (UAV) mimicking the exceptional flight capabilities of insects and birds in the natural world which can delicately control posture and position during flight by flapping wings. These air vehicles have great potential for high-performance applications due to their unique biomimetic shape and flight characteristics, enabling them to achieve high maneuverability and aerodynamic efficiency in low Reynolds number environments. Typically, biomimetic flapping-wing air vehicles adopt lightweight flexible-wing structures. However, the Fluid-Structure Interaction (FSI) problem is a prominent research challenge regarding the periodic flapping motion. This article provides an overview of the current research status of fluid-structure interaction in flexible-wing flapping, introducing the common methods for fluid-structure interaction and important dimensionless parameters involved in numerical simulation analysis of flexible-wing flapping. The latest progress achieved in both domestic and international research is analyzed, and the tools used in computational analysis are shared. Furthermore, the article identifies the problems and potential directions for further development in current research, offering prospects for future studies on fluid-structure interaction in biomimetic flexible-wing UAVs.

Cite this article

Wenqing YANG , Yueyang GUO , Yuanbo DONG , Dong XUE , Jianlin XUAN . Research progress on fluid structure interaction of bionic flexible flapping wing UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 530069 -530069 . DOI: 10.7527/S1000-6893.2024.30069

References

1 SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios[J]. Journal of Fluids and Structures201881: 69-96.
2 SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios[J]. Physics of Fluids201830(9): 091902.
3 PINES D J, BOHORQUEZ F. Challenges facing future micro-air-vehicle development[J]. Journal of Aircraft200643(2): 290-305.
4 CHEN L, ZHANG Y L, ZHOU C, et al. Aerodynamic mechanisms in bio-inspired micro air vehicles: A review in the light of novel compound layouts[J]. IET Cyber-Systems and Robotics20191(1): 2-12.
5 PRAPAMONTHON P, YIN B, YANG G W, et al. Recent progress in flexibility effects on wing aerodynamics and acoustics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021235(2): 208-244.
6 KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
7 MARTIN G. eMotion butterflies[EB/OL]. (2018-11-14) [2023-12-14]. .
8 吕扬. 西工大“云鸮”无人机创吉尼斯世界纪录[N]. 陕西日报, 2022-12-19(6).
  LYU Y. Northwestern Polytechnical University’s ‘Yun-xiao’ flapping-wing drone sets Guinness World Record [N]. Shaanxi Daily, 2022-12-19(6) (in Chinese).
9 叶正寅, 王刚, 张伟伟. 流固耦合力学基础及其应用[M]. 2版. 哈尔滨: 哈尔滨工业大学出版社, 2016.
  YE Z Y, WANG G, ZHANG W W. Fundamentals of fluid-structure coupling and its application[M]. 2nd ed. Harbin: Harbin Institute of Technology Press, 2016 (in Chinese).
10 HO T T T, LEE H, KWON Y. Analysis of intrinsic variability in phase-change memory switching originating from stochastic nucleation using fully coupled electrothermal and phase-field models[J]. ACS Applied Electronic Materials20235(1): 281-290.
11 ZHAN C, ZHU L Y, ZHANG Y X, et al. A fully coupled model of multi-chip press-pack IGBT for thermo-mechanical stress distribution prediction[J]. IEEE Transactions on Industry Applications202258(3): 3852-3862.
12 HONG G, KANEKO S, MITSUME N, et al. Robust fluid-structure interaction analysis for parametric study of flapping motion[J]. Finite Elements in Analysis and Design2021183-184: 103494.
13 HAIDER N, SHAHZAD A, QADRI M N M, et al. Aerodynamic analysis of hummingbird-like hovering flight[J]. Bioinspiration & Biomimetics202116(6): 066018.
14 STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics200370(1): 58-63.
15 NAKATA T, LIU H. A fluid-structure interaction model of insect flight with flexible wings[J]. Journal of Computational Physics2012231(4): 1822-1847.
16 NAKATA T, LIU H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach[J]. Proceedings Biological Sciences2012279(1729): 722-731.
17 WICK T. Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity[J]. Computational Mechanics201453(1): 29-43.
18 GRIFFITH B E, PATANKAR N A. Immersed methods for fluid-structure interaction[J]. Annual Review of Fluid Mechanics202052: 421-448.
19 MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics200537: 239-261.
20 PESKIN C S. The immersed boundary method[J]. Acta Numerica200211: 479-517.
21 HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019233(23-24): 7617-7636.
22 ZENG Y H, WANG Y, YANG D G, et al. Immersed boundary methods for simulations of biological flows in swimming and flying bio-locomotion: A review[J]. Applied Sciences202313(7): 4208.
23 XU L C, TIAN F B, YOUNG J, et al. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers[J]. Journal of Computational Physics2018375: 22-56.
24 HU Z, DENG X Y. Aerodynamic interaction between forewing and hindwing of a hovering dragonfly[J]. Acta Mechanica Sinica201430(6): 787-799.
25 WANG L, TIAN F B, LIU H. Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere[J]. Physics of Fluids202234(4): 041903.
26 BOMPHREY R J, NAKATA T, PHILLIPS N, et al. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight[J]. Nature2017544: 92-95.
27 LE T Q, TRUONG T V, PARK S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra: Hind wing interaction of a beetle during forward flight[J]. Journal of the Royal Society, Interface, 201310(85): 20130312.
28 VAN TRUONG T, LE T Q, BYUN D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus)[J]. Journal of Bionic Engineering20129(2): 177-184.
29 MENZER A, REN Y, GUO J C, et al. Wing kinematics and unsteady aerodynamics of a hummingbird pure yawing maneuver[J]. Biomimetics20227(3): 115.
30 KOEHLER C, LIANG Z X, GASTON Z, et al. 3D reconstruction and analysis of wing deformation in free-flying dragonflies[J]. The Journal of Experimental Biology2012215(Pt 17): 3018-3027.
31 ANDERSON JR J D. Fundamentals of aerodynamics [M]. New York: Tata McGraw-Hill Education, 2010.
32 SHYY W, AONO H, KANG C K, et al. An introduction to flapping wing aerodynamics[M]. Cambridge: Cambridge University Press, 2013.
33 SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences201046(7): 284-327.
34 HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics20138(4): 046008.
35 YIN B, LUO H X. Effect of wing inertia on hovering performance of flexible flapping wings[J]. Physics of Fluids201022(11): 111902-111902-10.
36 COMBES S A, DANIEL T L. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta[J]. Journal of Experimental Biology2003206(17): 2999-3006.
37 HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal200745(5): 1066-1079.
38 VANELLA M, FITZGERALD T, PREIDIKMAN S, et al. Influence of flexibility on the aerodynamic performance of a hovering wing[J]. The Journal of Experimental Biology2009212(Pt 1): 95-105.
39 OLIVIER M, DUMAS G. A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations[J]. Journal of Fluids and Structures201663: 210-237.
40 ISHIHARA D. Role of fluid-structure interaction in generating the characteristic tip path of a flapping flexible wing[J]. Physical Review E201898(3): 032411.
41 ISHIHARA D. Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings[J]. Fluids20227(1): 26.
42 TAHA H E, KIANI M, HEDRICK T L, et al. Vibrational control: A hidden stabilization mechanism in insect flight[J]. Science Robotics20205(46): eabb1502.
43 KARáSEK M. Good vibrations for flapping-wing flyers[J]. Science Robotics20205(46): eabe4544.
44 SANE S P, DIEUDONNé A, WILLIS M A, et al. Antennal mechanosensors mediate flight control in moths[J]. Science2007315(5813): 863-866.
45 MASOUD H, ALEXEEV A. Resonance of flexible flapping wings at low Reynolds number[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics201081(5 Pt 2): 056304.
46 DUDLEY R. The evolutionary physiology of animal flight: Paleobiological and present perspectives[J]. Annual Review of Physiology200062: 135-155.
47 HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics20138(4): 046008.
48 OZAKI T, HAMAGUCHI K. Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration[J]. IEEE Robotics and Automation Letters20183(4): 4217-4224.
49 THIRIA B, GODOY-DIANA R. How wing compliance drives the efficiency of self-propelled flapping flyers[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics201082(1 Pt 2): 015303.
50 RAMANANARIVO S, GODOY-DIANA R, THIRIA B. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance[J]. Proceedings of the National Academy of Sciences of the United States of America2011108(15): 5964-5969.
51 ZHANG J, LIU N S, LU X Y. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics2010659: 43-68.
52 SPAGNOLIE S E, MORET L, SHELLEY M J, et al. Surprising behaviors in flapping locomotion with passive pitching[J]. Physics of Fluids201022(4): 41903-41903-20 .
53 CHEN J S, CHEN J Y, CHOU Y F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound Vibration2008313(3-5): 643-654.
54 GUO Y Y, YANG W Q, DONG Y B, et al. Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics[J]. Physics of Fluids202234(8): 081903.
55 GUO Y Y, YANG W Q, DONG Y B, et al. Resonance mechanism of flapping wing based on fluid structure interaction simulation[J]. Chinese Journal of Aeronautics202437(5): 243-262.
56 CHO H, GONG D, LEE N, et al. Combined co-rotational beam/shell elements for fluid-structure interaction analysis of insect-like flapping wing[J]. Nonlinear Dynamics201997(1): 203-224.
57 TAY W B. Effect of different types of wing-wing interactions in flapping MAVs[J]. Journal of Bionic Engineering201714(1): 60-74.
58 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学201529(3): 1-10.
  YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics201529(3): 1-10 (in Chinese).
59 TAY W B, DE BAAR J H S, PERCIN M, et al. Numerical simulation of a flapping micro aerial vehicle through wing deformation capture[J]. AIAA Journal201856(8): 3257-3270.
60 PHAN H V, AURECIANUS S, KANG T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism[J]. International Journal of Micro Air Vehicles201911: 175682931986137.
61 PHAN H V, KANG T, PARK H C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control[J]. Bioinspiration & Biomimetics201712(3): 036006.
62 LEE J, YOON S H, KIM C. Experimental surrogate-based design optimization of wing geometry and structure for flapping wing micro air vehicles [J]. Aerospace Science and Technology2022123: 107451.
63 YOON S H, CHO H, LEE J, et al. Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle[J]. Journal of Fluids and Structures202097: 103101.
64 谢辉, 宋文萍, 宋笔锋. 基于CFD方法对微型扑翼翼型设计的研究[J]. 空气动力学学报200927(2): 227-233.
  XIE H, SONG W P, SONG B F. Airfoil design of a micro-flapping wing based on CFD[J]. Acta Aerodynamica Sinica200927(2): 227-233 (in Chinese).
65 YANG W Q, SONG B F, WANG L G, et al. Dynamic fluid-structure coupling method of flexible flapping wing for MAV[J]. Journal of Aerospace Engineering201528(6): 04015006.
66 陈利丽, 宋笔锋, 宋文萍, 等. 基于结构动力学的平板扑翼气动弹性方法研究[J]. 空气动力学学报201331(2): 175-180.
  CHEN L L, SONG B F, SONG W P, et al. Dynamic fluid-structure coupling research for micro flapping wing[J]. Acta Aerodynamica Sinica201331(2): 175-180 (in Chinese).
67 薛栋. 结构参数和机体运动对扑翼性能的影响研究[D]. 西安: 西北工业大学, 2018.
  XUE D. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
68 杨小武. 基于实测变形的扑动翼气动力与惯性力计算及解耦方法研究 [D]. 西安: 西北工业大学, 2022.
  YANG X. Calculation and decoupling of aerodynamic force and inertial force of flapping wing based on measured deformation [D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese).
69 YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics202235(6): 63-76.
70 朱志超. 面向高原环境的大型仿生扑动翼的设计方法研究 [D]. 西安: 西北工业大学, 2023.
  ZHU Z. A study on the design method of large bionic flapping wing for plateau environment [D]. Xi’an: Northwestern Polytechnical University, 2023 (in Chinese).
71 CHOI J S, PARK G J. Multidisciplinary design optimization of the flapping wing system for forward flight[J]. International Journal of Micro Air Vehicles20179(2): 93-110.
72 YANG L-J, FENG A-L, LEE H-C, et al. The three-dimensional flow simulation of a flapping wing [J]. Journal of Marine Science and Technology201826(3): 2.
73 FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering201629(4): 04016006.
74 CHIMAKURTHI S K, REUSS S, TOOLEY M, et al. ANSYS workbench system coupling: A state-of-the-art computational framework for analyzing multiphysics problems[J]. Engineering with Computers201834(2): 385-411.
75 HEATHCOTE S, WANG Z J, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[C]∥36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006.
76 AONO H, CHIMAKURTHI S K, WU P, et al. A computational and experimental studies of flexible wing aerodynamics[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
77 DAI H, LUO H X, DOYLE J F. Dynamic pitching of an elastic rectangular wing in hovering motion[J]. Journal of Fluid Mechanics2012693: 473-499.
78 WANG L, TIAN F B. Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight[J]. Journal of Fluids and Structures202099: 103165.
79 KAWAKAMI K, KANEKO S, HONG G, et al. Fluid-structure interaction analysis of flexible flapping wing in the Martian environment[J]. Acta Astronautica2022193: 138-151.
80 NOH W F. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code[R]. Livermore: Lawrence Radiation Lab., University of California, 1963.
81 HAMAMOTO M, OHTA Y, HARA K, et al. A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle[J]. IEEE Transactions on Robotics201026(2): 244-255.
Outlines

/