ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Vitiation effects on scramjet operational characteristics
Received date: 2023-12-27
Revised date: 2024-02-01
Accepted date: 2024-03-07
Online published: 2024-03-19
Supported by
National Level Project
Characteristics of internal flow and combustion in the scramjet engine have been constantly and extensively investigated, with experimental research strongly reliant on the combustion heated facilities. The combustion of fuels such as alcohol, hydrogen, and kerosene is able to heat the tested gas to the designed conditions, and the mole fraction of oxygen is ensured by the oxygen supplementation. Meanwhile, the combustion of fuels inevitably imports multiple vitiated air contaminants, the existence of which in the combustion heated facilities deviates the ground-test results from those obtained in the actual atmospheric flight conditions. Vitiation effects thus become an urgent problem to solve for improving the accuracy of ground-test result extrapolation. This paper comprehensively reviews five typical aspects, including the vitiation effects on ignition characteristics, scramjet performance, combustion mode transition, typical flow-parameter-matching scheme, and vitiation effect correction. The research progress of vitiation effects has also been introduced.The results show that in most cases, the vitiation component H2O will reduce the ignition delay time and promote fuel ignition, CO2 will inhibit combustion and free radicals and intermediates will significantly promote ignition for methane, ethylene, kerosene and other fuels. The inhibition effect of CO2 on combustion is more significant than that of H2O with the same mole fraction, and the inhibition effect shows a nonlinear trend. At present, the parameter matching schemes commonly used are difficult to reduce the vitiation effects, that is, the deviation of the results obtained from the ground test and the real flight test in the wide range of velocity and equivalent ratio. The correction of vitiation effects is still difficult to achieve.
Wen SHI , Jialing LE , Ye TIAN . Vitiation effects on scramjet operational characteristics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 30027 -030027 . DOI: 10.7527/S1000-6893.2024.30027
1 | BOUCHEZ M, ROUDAKOV A, KOPCHENOV V, et al. French-Russian analysis of kholod dual-mode ramjet flight experiments[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
2 | FERLEMANN S, MCCLINTON C, ROCK K, et al. Hyper-X Mach 7 scramjet design, ground test and flight results[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
3 | POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines: The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6): 1170-1176. |
4 | HAUDRICH D, BRASE L. Flutter and divergence assessment of the HyFly missile[C]∥ 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
5 | VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191. |
6 | 丁猛, 梁剑寒, 刘卫东, 等. 碳氢燃料超燃冲压发动机进气道与燃烧室匹配性能试验研究[J]. 航空学报, 2005, 26(1): 27-31. |
DING M, LIANG J H, LIU W D, et al. Experimental study on the interaction between inlet and combustor of hydrocarbon fueled scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 27-31 (in Chinese). | |
7 | WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
8 | 陈钱, 张会强, 王兵, 等. 超声速混合层燃烧研究进展[J]. 航空学报, 2017, 38(1): 020036. |
CHEN Q, ZHANG H Q, WANG B, et al. Research progress of combustion in supersonic mixing layers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020036 (in Chinese). | |
9 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
10 | 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57. |
LIN Y Z, LI L, ZHANG C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). | |
11 | 齐伟呈, 徐惊雷, 范志鹏, 等. 马赫数2~4连续可调风洞数值模拟及静态标定试验[J]. 航空学报, 2017, 38(1): 120155. |
QI W C, XU J L, FAN Z P, et al. Numerical simulation and experimental calibration of continuously adjustable wind tunnel with Mach number 2 to 4[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120155 (in Chinese). | |
12 | 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97. |
TANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97 (in Chinese). | |
13 | 王铁进, 施岳定, 邓志强, 等. 常规高超声速风洞的节能方案研究[J]. 实验流体力学, 2016, 30(6): 71-75, 104. |
WANG T J, SHI Y D, DENG Z Q, et al. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 71-75, 104 (in Chinese). | |
14 | GUY R, ROGERS R, PUSTER R, et al. The NASA Langley scramjet test complex[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996. |
15 | 尹光辉. Φ200(高)超声速风洞的设计调试及相关试验研究[D]. 长沙: 国防科学技术大学, 2008: 32-34. |
YIN G H. Design, debugging and related experimental study of φ 200 supersonic wind tunnel[D]. Changsha: National University of Defense Technology, 2008: 32-34 (in Chinese). | |
16 | PELLETT G, BRUNO C, CHINITZ W. Review of air vitiation effects on scramjet ignition and flameholding combustion processes[C]∥ 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. |
17 | 白菡尘, 陈军. 双模态冲压发动机等效热力过程与性能关系原理[M]. 北京: 国防工业出版社, 2018: 120-122. |
BAI H C, CHEN J. Connection principle between dual-mode scramjet performance and equivalent thermal-dynamic process[M]. Beijing: National Defense Industry Press, 2018: 120-122 (in Chinese). | |
18 | 姜宏亮. 基于TDLAS的污染组分对高超声速试验热力学参数的影响研究[D]. 合肥: 中国科学技术大学, 2014: 35-45. |
JIANG H L. Study on the influence of pollution components on thermodynamic parameters of hypersonic test based on TDLAS[D]. Hefei: University of Science and Technology of China, 2014: 35-45 (in Chinese). | |
19 | 姜宏亮, 刘坤伟, 金熠, 等. 污染组分对高超声速试验热力学参数影响研究[J]. 实验流体力学, 2015, 29(1): 25-30. |
JIANG H L, LIU K W, JIN Y, et al. An experimental investigation on the vitiation effects of hypersonic testing of aerothermal behaviors[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 25-30 (in Chinese). | |
20 | 宋文艳, 王艳华. 加热方式对煤油燃料超声速燃烧室性能影响研究[J]. 实验流体力学, 2018, 32(5): 7-12. |
SONG W Y, WANG Y H. Experimental study of the effects of heating methods on combustion characteristics in a supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 7-12 (in Chinese). | |
21 | 刘坤伟. 燃烧加热污染组分对高超气动/推进性能影响研究[D]. 合肥: 中国科学技术大学, 2016: 31-45. |
LIU K W. Study on the influence of combustion heating pollution components on hypersonic aerodynamic/propulsion performance[D]. Hefei: University of Science and Technology of China, 2016: 31-45 (in Chinese). | |
22 | JACHIMOWSKI C J, HOUGHTON W M. Effect of carbon dioxide and water vapor on the induction period of the hydrogen-oxygen reaction: NASA TND-X685[R]. Washington, D.C.: NASA, 1968. |
23 | EDELMAN R B, SPADACCINI L J. Theoretical effects of vitiated air contamination on ground testing of hypersonic airbreathing engines[J]. Journal of Spacecraft and Rockets, 1969, 6(12): 1442-1447. |
24 | EDELMAN R B. The effect of vitiated air contamination on ground testing: AIAA-1969-0456 [R]. Reston: AIAA, 1969. |
25 | SRINIVASAN S, ERICKSON W. Interpretation of vitiation effects on testing at Mach 7 flight conditions[C]∥ 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
26 | SRINIVASAN S, ERICKSON W. Influence of test-gas vitiation on mixing and combustion at Mach 7 flight conditions[C]∥ Proceedings of the 30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994. |
27 | SLACK M, GRILLO A. Investigation of hydrogen-air ignition sensitized by nitric oxide and by nitrogen dioxide: NASA CR-2896 [R]. Washington, D.C.: NASA, 1978. |
28 | GURENTSOV E V, DIVAKOV O G, EREMIN A V. Ignition of multicomponent hydrocarbon/air mixtures behind shock waves[J]. High Temperature, 2002, 40(3): 379-386. |
29 | MITANI T, HIRAIWA T, SATO S, et al. Scramjet engine testing in Mach 6 vitiated air[C]∥ Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996. |
30 | MITANI T, HIRAIWA T, SATO S, et al. Comparison of scramjet engine performance in Mach 6 vitiated and storage-heated air[J]. Journal of Propulsion and Power, 1997, 13(5): 635-642. |
31 | 刘伟雄, 贺伟, 李宏斌, 等. 污染组分对氢燃料发动机燃烧动力学的影响[J]. 科学通报, 2008, 53(18): 2257-2260. |
LIU W X, HE W, LI H B, et al. Effect of pollutant components on combustion dynamics of hydrogen-fueled engine[J]. Chinese Science Bulletin, 2008, 53(18): 2257-2260 (in Chinese). | |
32 | 邵菊香, 谈宁馨, 刘伟雄, 等. 空气污染组分H_2O和CO_2对乙烯燃烧性能的影响(Ⅱ): 反应机理和动力学模拟[J]. 物理化学学报, 2010, 26(2): 270-276. |
SHAO J X, TAN N X, LIU W X, et al. Influence of H2O and CO2 in air on the combustion of ethylene (Ⅱ)—reaction mechanism and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2010, 26(2): 270-276 (in Chinese). | |
33 | 梁金虎, 胡弘浩, 王苏, 等. 空气污染组分H2O和CO2对乙烯点火特性的影响[J]. 推进技术, 2014, 35(2): 220-226. |
LIANG J H, HU H H, WANG S, et al. Effects of H2O and CO2 in vitiated air on ignition characteristic of ethylene[J]. Journal of Propulsion Technology, 2014, 35(2): 220-226 (in Chinese). | |
34 | 梁金虎, 王苏, 张灿, 等. H2O/CO2污染对RP-3航空煤油着火特性的影响[J]. 推进技术, 2015, 36(3): 336-344. |
LIANG J H, WANG S, ZHANG C, et al. Effects of H2O and CO2 on ignition characteristics of RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2015, 36(3): 336-344 (in Chinese). | |
35 | LIANG J H, WANG S, ZHANG S T, et al. The vitiation effects of water vapor and carbon dioxide on the autoignition characteristics of kerosene[J]. Acta Mechanica Sinica, 2014, 30(4): 485-494. |
36 | INGENITO A. Theoretical investigation of air vitiation effects on hydrogen fuelled scramjet performance[J]. International Journal of Hydrogen Energy, 2015, 40(6): 2862-2870. |
37 | 张方. 航空煤油燃烧机理简化及点火和熄火燃烧特性研究[D]. 绵阳: 西南科技大学, 2018: 51-55. |
ZHANG F. Study on combustion mechanism simplification and ignition and flameout combustion characteristics of aviation kerosene[D]. Mianyang: Southwest University of Science and Technology, 2018: 51-55 (in Chinese). | |
38 | 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016: 119-138. |
CHEN J. Study on thermodynamic working process and performance potential of combustion chamber of MA4 ~ 7 dual-mode ramjet[D]. Mianyang: China Aerodynamics Research and Development Center, 2016: 119-138 (in Chinese). | |
39 | 李卫强. 水组分对超燃冲压发动机燃烧室性能的影响[D]. 西安: 西北工业大学, 2006: 42-54. |
LI W Q. Effect of water composition on combustion chamber performance of scramjet[D]. Xi’an: Northwestern Polytechnical University, 2006: 42-54 (in Chinese). | |
40 | 罗飞腾, 宋文艳, 刘昊. 污染空气对氢燃料超声速燃烧室性能的影响[J]. 推进技术, 2010, 31(4): 401-405. |
LUO F T, SONG W Y, LIU H. Experimental investigation for vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Journal of Propulsion Technology, 2010, 31(4): 401-405 (in Chinese). | |
41 | 王磊, 宋文艳, 罗飞腾. H2O组分对氢燃料超音速燃烧室性能的影响[J]. 航空工程进展, 2010, 1(2): 159-163. |
WANG L, SONG W Y, LUO F T. Research on the effects of H2O contaminant on hydrogen-fueled supersonic combustor performance[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 159-163 (in Chinese). | |
42 | LUO F T, SONG W Y, ZHANG Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2): 164-172. |
43 | 邢建文, 杨样. H2O污染对超燃冲压发动机燃烧室性能影响的三维数值模拟[J]. 推进技术, 2011, 32(1): 5-10. |
XING J W, YANG Y. Three-dimensional simulation of H2O vitiation effects on combustor performance for scramjet[J]. Journal of Propulsion Technology, 2011, 32(1): 5-10 (in Chinese). | |
44 | 邢建文, 肖保国. H_2O污染对煤油燃料超燃冲压发动机燃烧室性能影响的数值模拟[J]. 航空动力学报, 2012, 27(11): 2408-2413. |
XING J W, XIAO B G. Numerical simulation of H2O vitiation effects on kerosene-fueled scramjet combustor performance[J]. Journal of Aerospace Power, 2012, 27(11): 2408-2413 (in Chinese). | |
45 | ZHONG Z P. Key technology and experimental results of the clean air heated facility for supersonic combustion[J]. Chinese Journal of Mechanical Engineering, 2009, 22(5): 760-765. |
46 | 邢建文, 李卫强, 肖保国. 不同燃料燃烧加热对超燃冲压发动机性能影响的分析与评估[J]. 推进技术, 2013, 34(12): 1636-1642. |
XING J W, LI W Q, XIAO B G. Effects of different fueled combustion heater on scramjet performance[J]. Journal of Propulsion Technology, 2013, 34(12): 1636-1642 (in Chinese). | |
47 | 侯凌云, 杨缙, 马雪松, 等. 空气污染各组分对甲烷超声速燃烧性能的影响[J]. 物理化学学报, 2010, 26(12): 3150-3156. |
HOU L Y, YANG J, MA X S, et al. Effects of species in vitiation air on methane-fueled supersonic combustion[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3150-3156 (in Chinese). | |
48 | 侯凌云, 杨缙, 马雪松, 等. 乙醇燃烧加热空气污染物对煤油超燃的影响[J]. 航空动力学报, 2011, 26(9): 1921-1927. |
HOU L Y, YANG J, MA X S, et al. Influences of vitiation air from ethanol-fueled heating on kerosene-fueled supersonic combustion[J]. Journal of Aerospace Power, 2011, 26(9): 1921-1927 (in Chinese). | |
49 | CHEN C Q, TIAN L, XU X. Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion[J]. Journal of Aerospace Power, 2012, 27(2): 326-334. |
50 | 李建平, 宋文艳, 罗飞腾, 等. H2O/CO2污染对煤油燃料超声速燃烧影响数值研究[J]. 推进技术, 2013, 34(4): 562-571. |
LI J P, SONG W Y, LUO F T, et al. Numerical investigation of H2O/CO2 vitiation effects on kerosene-fueled supersonic combustion[J]. Journal of Propulsion Technology, 2013, 34(4): 562-571 (in Chinese). | |
51 | SONG W Y, WANG Y H, FU Q, et al. Experimental investigation of test medium vitiation effects on supersonic combustion[C]∥ Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST). Piscataway: IEEE Press, 2014: 304-312. |
52 | 陈亮, 宋文艳, 罗飞腾. H2O/CO2污染对煤油燃料双模态超声速燃烧室影响研究[J]. 推进技术, 2015, 36(2): 253-260. |
CHEN L, SONG W Y, LUO F T. Vitiation effects of H2O/CO2 on kerosene-fueled dual-mode supersonic combustor performance[J]. Journal of Propulsion Technology, 2015, 36(2): 253-260 (in Chinese). | |
53 | LI J P, SONG W Y, LUO F T, et al. Experimental investigation of vitiation effects on supersonic combustor performance[J]. Acta Astronautica, 2014, 96: 296-302. |
54 | 陈军, 白菡尘, 柳森. 总焓模拟含水实验介质对双模态燃烧室过程与性能的影响分析[J]. 推进技术, 2017, 38(1): 112-118. |
CHEN J, BAI H C, LIU S. Analysis of water-vitiated medium effects on dual-mode combustor process for enthalpy-simulated method[J]. Journal of Propulsion Technology, 2017, 38(1): 112-118 (in Chinese). | |
55 | MCDANIEL J C, KRAUSS R H, WHITEHURST W B, et al. Test gas vitiation effects in a dual-mode combustor: AIAA-2003-6960 [R]. Reston: AIAA, 2003. |
56 | GOYNE C P, MCDANIEL J C, KRAUSS R H, et al. Test gas vitiation effects in a dual-mode scramjet combustor[J]. Journal of Propulsion and Power, 2007, 23(3): 559-565. |
57 | ROCKWELL R, GOYNE C, HAW W, et al. Experimental study of test medium vitiation effects on dual-mode scramjet mode transition[C]∥ 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
58 | HAW W L, GOYNE C P, ROCKWELL R D, et al. Experimental study of vitiation effects on scramjet mode transition[J]. Journal of Propulsion and Power, 2011, 27(2): 506-508. |
59 | ROCKWELL R D, GOYNE C P, HAW W, et al. Experimental study of test-medium vitiation effects on dual-mode scramjet performance[J]. Journal of Propulsion and Power, 2011, 27(5): 1135-1142. |
60 | NODA J. Quasi-one dimensional modeling on vitiation effects for a dual-mode combustor: AIAA-2012-5862 [R]. Reston: AIAA, 2012. |
61 | 张志强, 宋文艳, 罗飞腾. H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟[J]. 西北工业大学学报, 2012, 30(2): 256-261. |
ZHANG Z Q, SONG W Y, LUO F T. Numerical investigation of effects of H2O/CO2 vitiation on performance of hydrogen and ethylene supersonic combustors[J]. Journal of Northwestern Polytechnical University, 2012, 30(2): 256-261 (in Chinese). | |
62 | VOLAND R, AUSLENDER A, SMART M, et al. CIAM/NASA Mach 6.5 scramjet flight and ground test[C]∥ 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
63 | 郭帅帆, 宋文艳, 李建平, 等. 燃烧加热污染空气对超燃冲压发动机性能影响研究[J]. 推进技术, 2013, 34(4): 493-498. |
GUO S F, SONG W Y, LI J P, et al. Numerical investigation of effects of vitiated air on scramjet performance[J]. Journal of Propulsion Technology, 2013, 34(4): 493-498 (in Chinese). | |
64 | BOYCE R R, PAULL A, STALKER R J, et al. Comparison of supersonic combustion between impulse and vitiation-heated facilities[J]. Journal of Propulsion and Power, 2000, 16(4): 709-717. |
65 | 陈亮, 宋文艳, 罗飞腾, 等. 燃烧加热污染空气对煤油超燃冲压发动机性能的影响[J]. 航空动力学报, 2013, 28(11): 2408-2418. |
CHEN L, SONG W Y, LUO F T, et al. Effects of combustion heating vitiated air on kerosene-fueled scramjet performance[J]. Journal of Aerospace Power, 2013, 28(11): 2408-2418 (in Chinese). | |
66 | 刘坤伟, 朱雨建, 杨基明, 等. 两种燃烧加热风洞参数匹配方案的比较[J]. 推进技术, 2017, 38(6): 1226-1234. |
LIU K W, ZHU Y J, YANG J M, et al. Comparison of two typical flow-parameter-matching schemes in a combustion wind tunnel[J]. Journal of Propulsion Technology, 2017, 38(6): 1226-1234 (in Chinese). | |
67 | 谭宇, 毛雄兵, 焦伟, 等. 燃烧风洞不同模拟方式对超燃发动机性能影响试验研究[J]. 推进技术, 2017, 38(9): 2062-2068. |
TAN Y, MAO X B, JIAO W, et al. Experimental investigation of effects of different simulation way of combustion heating wind tunnel on scramjet performance[J]. Journal of Propulsion Technology, 2017, 38(9): 2062-2068 (in Chinese). | |
68 | WANG Y H, SONG W Y, FU Q, et al. Experimental study of vitiation effects on hydrogen/kerosene fueled supersonic combustor[J]. Aerospace Science and Technology, 2017, 60: 108-114. |
/
〈 |
|
〉 |