Swarm Intelligence and Cooperative Control

A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy

  • Zhenwei WANG ,
  • Kai LIU ,
  • Jian GUO ,
  • Xiaopeng LIU
Expand
  • 1.School of Mechanics and Aerospace Engineering,Dalian University of Technology,Dalian 116024,China
    2.Beijing Aerospace Technology Institute,Beijing 100074,China

Received date: 2023-10-30

  Revised date: 2023-11-21

  Accepted date: 2023-12-15

  Online published: 2023-12-25

Supported by

National Natural Science Foundation of China(U2141229)

Abstract

As the unmanned system technology continues to advance, the issue of cross-domain cooperation in unmanned cluster systems has become a research hotspot. To address the problem of front-end cooperative navigation of multi-Unmanned Aerial Vehicles (UAVs) and multi-Unmanned Surface Vehicles (USVs) in a sea-air cooperation scenario, this paper conducts research on the multi-UAVs and multi-USVs formation cooperation mechanism based on the hierarchical leader-follower strategy. A motion model for cross-domain cluster formation is established to describe the leader-follower relationships among various entities within the cross-domain cluster system. Regarding the cooperative trajectory planning problem for the Leader-UAV and Leader-USV, a trajectory cost function considering multiple constraints is formulated based on the established double-layer grid map model. The improved genetic algorithm is employed for optimization. In the context of cross-domain cluster formation cooperative motion control, heterogeneous formation controllers for the leader-UAV and leader-USV and homogeneous formation motion controllers are designed based on the hierarchical leader-follower formation strategy. Parameter tuning is performed for the homogeneous formation motion controller using the fuzzy controller. Simulation experiments validate the effectiveness of the proposed cross-domain cooperative mechanism for multi-UAVs and multi-USVs.

Cite this article

Zhenwei WANG , Kai LIU , Jian GUO , Xiaopeng LIU . A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729791 -729791 . DOI: 10.7527/S1000-6893.2023.29791

References

1 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报202243(S1): 726908.
  LIU L, LIU D W, WANG X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726908 (in Chinese).
2 何玉庆, 秦天一, 王楠. 跨域协同:无人系统技术发展和应用新趋势[J]. 无人系统技术20214(4): 1-13.
  HE Y Q, QIN T Y, WANG N. Cross-domain collaboration: New trends in the development and application of unmanned systems technology[J]. Unmanned Systems Technology20214(4): 1-13 (in Chinese).
3 WU Y, LOW K H, LV C. Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Transactions on Vehicular Technology202069(6): 6782-6787.
4 HUANG T, CHEN Z, GAO W, et al. A USV-UAV cooperative trajectory planning algorithm with hull dynamic constraints[J]. Sensors202323(4): 1845.
5 KE C, CHEN H F. Cooperative path planning for air–sea heterogeneous unmanned vehicles using search-and-tracking mission[J]. Ocean Engineering2022262: 112020.
6 白嘉琪, 王彦恺, 邢昊. 无人艇与四旋翼无人机固定时间异构编队控制[J]. 系统工程与电子技术202345(4): 1152-1163.
  BAI J Q, WANG Y K, XING H. Fixed-time heterogeneous formation control of unmanned boats and quadrotor unmanned aerial vehicle[J]. Systems Engineering and Electronics202345(4): 1152-1163 (in Chinese).
7 LIU H T, WENG P J, TIAN X H, et al. Distributed adaptive fixed-time formation control for UAV-USV heterogeneous multi-agent systems[J]. Ocean Engineering2023267: 113240.
8 KE C, CHEN H F, XIE L. Cross-domain fixed-time formation control for an air-sea heterogeneous unmanned system with disturbances[J]. Journal of Marine Science and Engineering202311(7): 1336.
9 SHAO G M, MA Y, MALEKIAN R, et al. A novel cooperative platform design for coupled USV?UAV systems[J]. IEEE Transactions on Industrial Informatics201915(9): 4913-4922.
10 LAPANDI? D, PERSSON L, DIMAROGONAS D V, et al. Aperiodic communication for MPC in autonomous cooperative landing [J]. IFAC-PapersOnLine202154(6): 113-118.
11 LI W Z, GE Y, GUAN Z H, et al. Synchronized motion-based UAV–USV cooperative autonomous landing[J]. Journal of Marine Science and Engineering202210(9): 1214.
12 崔恺, 曾国奇, 林伟, 等. 一种基于图论的机场空域无人机流量控制方法[J]. 北京航空航天大学学报202046(5): 978-987.
  CUI K, ZENG G Q, LIN W, et al. Flow control method for UAV airport airspace based on graph theory[J]. Journal of Beijing University of Aeronautics and Astronautics202046(5): 978-987 (in Chinese).
13 张哲, 吴剑, 代冀阳, 等. 基于改进A-Star算法的隐身无人机快速突防航路规划[J]. 航空学报202041(7): 323692.
  ZHANG Z, WU J, DAI J Y, et al. Fast penetration path planning for stealth UAV based on improved A-Star algorithm[J]. Acta Aeronautica et Astronautica Sinica202041(7): 323692 (in Chinese).
14 WANG J K, CHI W Z, LI C M, et al. Neural RRT*: Learning-based optimal path planning[J]. IEEE Transactions on Automation Science and Engineering202017(4): 1748-1758.
15 HAN Y H, XIANG H Y, CAO J N, et al. Study on optimization of multi-UAV nucleic acid sample delivery paths in large cities under the influence of epidemic environment[J]. Journal of Ambient Intelligence and Humanized Computing202314(6): 7593-7620.
16 葛佳昊, 刘莉, 董欣心, 等. 基于动力学RRT*的自由漂浮空间机器人轨迹规划[J]. 航空学报202142(1): 523877.
  GE J H, LIU L, DONG X X, et al. Trajectory planning for free floating space robots based on kinodynamic RRT* [J]. Acta Aeronautica et Astronautica Sinica202142(1): 523877 (in Chinese).
17 王庆禄, 吴冯国, 郑成辰, 等. 基于优化人工势场法的无人机航迹规划[J]. 系统工程与电子技术202345(5): 1461-1468.
  WANG Q L, WU F G, ZHENG C C, et al. UAV path planning based on optimized artificial potential field method[J]. Systems Engineering and Electronics202345(5): 1461-1468 (in Chinese).
18 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报201940(3): 322493.
  ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica201940(3): 322493 (in Chinese).
19 刘鑫, 杨霄鹏, 刘雨帆, 等. 基于GA-OCPA学习系统的无人机路径规划方法[J]. 航空学报201738(11): 321275.
  LIU X, YANG X P, LIU Y F, et al. UAV path planning based on GA-OCPA learning system[J]. Acta Aeronautica et Astronautica Sinica201738(11): 321275 (in Chinese).
20 SINGH M K, CHOUDHARY A, GULIA S, et al. Multi-objective NSGA-II optimization framework for UAV path planning in an UAV-assisted WSN[J]. The Journal of Supercomputing202379(1): 832-866.
21 魏彤, 龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报202046(4): 703-711.
  WEI T, LONG C. Path planning for mobile robot based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics202046(4): 703-711 (in Chinese).
22 李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报202041(S2): 724381.
  LI X Q, MA R, ZHANG S, et al. Improved design of ant colony algorithm and its application in route planning[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724381 (in Chinese).
23 LI G X, LIU C, WU L, et al. A mixing algorithm of ACO and ABC for solving path planning of mobile robot[J]. Applied Soft Computing2023148: 110868.
24 YU Z H, SI Z J, LI X B, et al. A novel hybrid particle swarm optimization algorithm for path planning of UAVs[J]. IEEE Internet of Things Journal20229(22): 22547-22558.
25 LIU Y, ZHANG X J, ZHANG Y, et al. Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach[J]. Chinese Journal of Aeronautics201932(6): 1504-1519.
26 阚平, 姜兆亮, 刘玉浩, 等. 多植保无人机协同路径规划[J]. 航空学报202041(4): 323610.
  KAN P, JIANG Z L, LIU Y H, et al. Cooperative path planning for multi-sprayer-UAVs[J]. Acta Aeronautica et Astronautica Sinica202041(4): 323610 (in Chinese).
27 ZHANG M H, HAN Y H, CHEN S Y, et al. A Multi-Strategy Improved Differential Evolution algorithm for UAV 3D trajectory planning in complex mountainous environments[J]. Engineering Applications of Artificial Intelligence2023125: 106672.
28 王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报202041(S1): 723758.
  WANG J, GU W B, DOU L Y. Trajectory tracking design of multi-UAV formation based on Leader-Follower[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723758 (in Chinese).
29 CHEN H, WANG X K, SHEN L C, et al. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach[J]. Chinese Journal of Aeronautics202134(2): 504-515.
30 LI J C, LIU J M, HUANGFU S Q, et al. Leader-follower formation of light-weight UAVs with novel active disturbance rejection control[J]. Applied Mathematical Modelling2023117: 577-591.
31 杨明月, 寿莹鑫, 唐勇, 等. 多四旋翼无人机编队保持与避碰控制[J]. 航空学报202243(S1): 726913.
  YANG M Y, SHOU Y X, TANG Y, et al. Formation maintenance and collision avoidance control of multi-quadrotor UAV[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726913 (in Chinese).
32 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用202037(11): 2423-2431.
  LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications202037(11): 2423-2431 (in Chinese).
33 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报202041(8): 323722.
  XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica202041(8): 323722 (in Chinese).
34 TAN G G, ZHUANG J Y, ZOU J, et al. Coordination control for multiple unmanned surface vehicles using hybrid behavior-based method[J]. Ocean Engineering2021232: 109147.
35 向乾, 张晓辉, 王正平, 等. 适用无人机的小型燃料电池控制方法[J]. 航空学报202142(3): 623960.
  XIANG Q, ZHANG X H, WANG Z P, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica202142(3): 623960 (in Chinese).
36 PUSSENTE G A N, DE AGUIAR E P, MARCATO A L M, et al. UAV power line tracking control based on a type-2 fuzzy-PID approach[J]. Robotics202312(2): 60.
Outlines

/