ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Key technologies for massive unsteady simulation of whole compressor
Received date: 2023-11-13
Revised date: 2023-12-20
Accepted date: 2024-03-05
Online published: 2024-03-14
Supported by
Provincial or Ministerial Level Project
The aero-engine compressor often contains multiple ducts and up to a dozen compressor stages, and the full-annulus unsteady simulation technology is one of the means to improve the fidelity of its internal flow field simulation. The billions of the compressor grids result in a huge amount of unsteady simulation computation, necessitating the development of a highly scalable solver for the massive unsteady CFD simulation of the compressor. Based on the in-house software ASPAC, a universal solution to generating the initial field of the full-annulus grid after partitioning based on the single channel grid steady flow field is provided; analysis and testing are conducted on the international method of generating full-annulus wall distance based on the single channel wall distance, and the deviation distribution area and magnitude caused by this method in unsteady simulation results are given. We further develop a grid overlap localization strategy for the blade row interface considering grid distortion, conduct the MPI/OpenMP hybrid parallel transformation of compressor unsteady simulation, and solve the problem of data competition during OpenMP parallel simulation by optimizing the solution process. The results show that the developed method has been successfully applied to the full-annulus unsteady simulation of a twin-spool 13-stage compressor with 6.116 billion grids using 102 400 CPU cores. The MPI/OpenMP hybrid parallel mode has basically solved load imbalance caused by the dynamic processing of the blade row interface interpolation. The parallel efficiency of the 102 400 cores compared to the 10 240 cores is 84.7%, far higher than that of the MPI parallel mode of 46.7%.
Ziwei WANG , Zhaolin FAN , Bin LI , Jie CAO , Liang DENG , Nianhua WANG , Xiong JIANG . Key technologies for massive unsteady simulation of whole compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 129865 -129865 . DOI: 10.7527/S1000-6893.2024.29865
1 | 刘大响, 金捷, 刘邓欢. 数值仿真技术在航空动力研制中的地位和作用[J]. 航空动力学报, 2022, 37(10): 2017-2024. |
LIU D X, JIN J, LIU D H. Position and function of numerical simulation technology in aero-engine development[J]. Journal of Aerospace Power, 2022, 37(10): 2017-2024 (in Chinese). | |
2 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences:NASA/CR-2014-2181782014[R]. Washington, D.C.: NASA, 2014. |
3 | SPAKOVSZKY Z S. Instabilities everywhere! Hard problems in aero-engines[J]. Journal of Turbomachinery, 2023, 145(2): 021011. |
4 | 温泉, 李義進, 劉婷, 等. 航空发动机整机三维气动仿真研究进展[J]. 航空动力, 2021(2): 46-51. |
WEN Q, LI Y J, LIU T, et al. Advances in the research of 3D full engine aerodynamics simulation[J]. Aerospace Power, 2021(2): 46-51 (in Chinese). | |
5 | TURNER M. Lessons learned from the GE90 3-D full engine simulations[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
6 | 曹传军, 刘天一, 朱伟, 等. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报, 2023, 44(12): 027824. |
CAO C J, LIU T Y, ZHU W, et al. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 027824 (in Chinese). | |
7 | BOUSQUET Y, BINDER N, ROJDA L, et al. Analysis of the unsteady flow field at stall conditions for a low-speed low-pressure ratio axial fan with full-annulus simulation[J]. Journal of Turbomachinery, 2022, 144(11): 111008. |
8 | ZHAO H L, DU J, ZHANG W Q, et al. A review on theoretical and numerical research of axial compressor surge[J]. Journal of Thermal Science, 2023, 32(1): 254-263. |
9 | 赵红亮, 张文强, 邱佳慧, 等. 总温畸变下跨声压气机失速过程非定常模拟[J]. 航空学报, 2023, 44(14): 628319. |
ZHAO H L, ZHANG W Q, QIU J H, et al. Unsteady simulation of stall process in transonic compressor with total temperature distortion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628319 (in Chinese). | |
10 | 王年华, 常兴华, 赵钟, 等. 非结构CFD软件MPI+OpenMP混合并行及超大规模非定常并行计算的应用[J]. 航空学报, 2020, 41(10): 123859. |
WANG N H, CHANG X H, ZHAO Z, et al. Implementation of hybrid MPI+OpenMP parallelization on unstructured CFD solver and its applications in massive unsteady simulations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123859 (in Chinese). | |
11 | VOS J B, LEYLAND P, KEMENADE V, et al. NSMB handbook 5.0[R]. 2003. |
12 | KRIST S L, BIEDRON R T, RUMSEY C L. CFL3d user’s manual:NASA TM-1998-208444[R]. Washington, D.C.: NASA, 1998. |
13 | 李广宁, 李凤蔚, 周志宏. 一种高效的壁面距离计算方法[J]. 航空工程进展, 2010, 1(2): 137-142. |
LI G N, LI F W, ZHOU Z H. An efficient method for calculating wall distance[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 137-142 (in Chinese). | |
14 | 杨永国, 程兴华, 王万金. 大规模流场模拟中壁面距离的并行计算方法研究[J]. 计算机工程与科学, 2016, 38(6): 1086-1090. |
YANG Y G, CHENG X H, WANG W J. A parallel computation method of wall distance for large-scale flow simulation[J]. Computer Engineering & Science, 2016, 38(6): 1086-1090 (in Chinese). | |
15 | 张洪亮, 林娜, 李明星. 壁面距离循环盒子法并行计算与仿真研究[J]. 计算机仿真, 2018, 35(2): 224-228. |
ZHANG H L, LIN N, LI M X. Parallel algorithm of box-splitting method for wall distance calculation[J]. Computer Simulation, 2018, 35(2): 224-228 (in Chinese). | |
16 | 赵钟, 何磊, 张健, 等. 湍流模拟壁面距离MPI/OpenMP混合并行计算方法[J]. 空气动力学学报, 2019, 37(6): 883-892. |
ZHAO Z, HE L, ZHANG J, et al. MPI/OpenMP hybrid parallel computation of wall distance for turbulence flow simulations[J]. Acta Aerodynamica Sinica, 2019, 37(6): 883-892 (in Chinese). | |
17 | LIU A, JU Y P, ZHANG C H. Parallel rotor/stator interaction methods and steady/unsteady flow simulations of multi-row axial compressors[J]. Aerospace Science and Technology, 2021, 116: 106859. |
18 | GOURDAIN N, WLASSOW F, OTTAVY X. Effect of tip clearance dimensions and control of unsteady flows in a multi-stage high-pressure compressor[J]. Journal of Turbomachinery, 2012, 134(5): 051005. |
19 | YAMADA K, FURUKAWA M, TAMURA Y, et al. Large-scale detached-eddy simulation analysis of stall inception process in a multistage axial flow compressor[J]. Journal of Turbomachinery, 2017, 139(7): 071002. |
20 | COZZI L, RUBECHINI F, MARCONCINI M, et al. Facing the challenges in CFD modelling of multistage axial compressors:GT2017-63240[R]. New York: ASME, 2017. |
21 | ZHAO F Z, DODDS J, VAHDATI M. Post-stall behaviour of a multi-stage high speed compressor at off-design conditions: GT2018-75283[R]. New York: ASME, 2018. |
22 | WANG Z W, JIANG X, LU F S, et al. Large-scale simulation of unsteady flows in 13-stage multi-spool compressor[J]. Journal of Physics: Conference Series, 2021, 2010(1): 012194. |
23 | CHEN H, WANG Z H, XIAO X, et al. SunwayURANS: 3D full-annulus URANS simulations of transonic axial compressors on Sunway TaihuLight[J]. The Journal of Supercomputing, 2022, 78(17): 19167-19187. |
24 | 刘江, 刘文博, 张矩. OpenFoam中多面体网格生成的MPI+OpenMP混合并行方法[J]. 计算机科学, 2022, 49(3): 3-10. |
LIU J, LIU W B, ZHANG J. Hybrid MPI+OpenMP parallel method on polyhedral grid generation in OpenFoam[J]. Computer Science, 2022, 49(3): 3-10 (in Chinese). | |
25 | 王子维, 范召林, 江雄, 等. 用于压气机流动计算的3种模型比较[J]. 航空动力学报, 2017, 32(5): 1195-1206. |
WANG Z W, FAN Z L, JIANG X, et al. Comparison among three models for compressor internal flow[J]. Journal of Aerospace Power, 2017, 32(5): 1195-1206 (in Chinese). | |
26 | 郝颜, 邱名, 江雄, 等. 进口预旋对预压缩叶栅性能影响研究[J]. 推进技术, 2017, 38(12): 2725-2733. |
HAO Y, QIU M, JIANG X, et al. Investigation of inlet pre-swirl influence on performance in precompression cascade[J]. Journal of Propulsion Technology, 2017, 38(12): 2725-2733 (in Chinese). | |
27 | 郝颜, 江雄, 邱名, 等. 超声压气机静/转干涉的非定常模拟研究[J]. 空气动力学学报, 2018, 36(5): 749-756. |
HAO Y, JIANG X, QIU M, et al. Numerical study on unsteady stator-rotor interaction in supersonic compressor[J]. Acta Aerodynamica Sinica, 2018, 36(5): 749-756 (in Chinese). | |
28 | 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. |
ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383 (in Chinese). | |
29 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
30 | ROSINSKI J. GPTL - general purpose timing library[EB/OL].[2024-03-05]. |
31 | 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. |
XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711 (in Chinese). |
/
〈 |
|
〉 |