ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Laser-electromagnetic ultrasonic resonance measurement method for metal sheet thickness
Received date: 2023-10-30
Revised date: 2023-11-13
Accepted date: 2024-03-04
Online published: 2024-03-14
Supported by
Central Military-civilian Integration Special Transfer Payment Project(GT202408141);Fundamental Research Program of Commission of Science Technology and Industry for National Defence(JCKY2022401C005);National Natural Science Foundation of China(52065049);Jiangxi Province Funds for Distinguished Young Youths(20212ACB214010);Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province(20204BCJL22039);Key Research and Development Plan of Jiangxi Province(20212BBE51006);Jiangxi Provincial Natural Science Youth Fund(20224BAB214052);Graduate Innovation Fund Project of Nanchang Hangkong University(YC2022-096)
Aluminum alloys, stainless steel, nickel-based alloys, and other materials are widely used in aerospace hot-end components. The thickness measurement of metal materials under alternating mechanical loads and high-temperature and high-pressure gas erosion is significant for improving the reliability and safety of metal components in service. A laser electromagnetic ultrasonic thickness measurement technology based on the shear wave resonance spectrum is proposed to address online thickness detection challenges and monitor hot-end component materials such as aircraft engines and solid rockets in high-temperature vibration environments. A finite element model for laser electromagnetic ultrasonic shear wave resonance detection was established using samples of three metal materials: aluminum alloy 5083, stainless steel 304, and nickel-based alloy GH4169. The effects of parameters such as laser spot diameter, Electromagnetic Acoustic Transducer (EMAT) coil diameter, coil wire diameter, and lift-off on the resonance frequency point and echo amplitude were analyzed, and resonance thickness measurement experiments were conducted on metal samples at room temperature and high temperatures. Research has shown that when the laser spot diameter, EMAT coil outer diameter, line diameter, and lift-off are 4 mm, 12 mm, 0.26 mm, and 0.30 mm, respectively, the laser EMAT ultrasound echo amplitude is the highest. When the thickness of the three metal material samples mentioned above ranges from 0.5 mm to 3.0 mm, the deviation of the resonance method for thickness measurement does not exceed 2%, 6%, and 4%, and it can be applied to thickness measurement of the three metal materials under high-temperature conditions of more than 450 ℃.
Wei GUO , Wenze SHI , Chao LU , Bo HU , Yuan LIU . Laser-electromagnetic ultrasonic resonance measurement method for metal sheet thickness[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(23) : 429795 -429795 . DOI: 10.7527/S1000-6893.2024.29795
1 | 林鹏, 庄福建, 曲林锋, 等. 高超声速飞机尾喷管设计-制造与验证技术发展综述[J]. 航空学报, 2022, 43( 6): 526160. |
LIN P, ZHUANG F J, QU L F, et al. Technological development in hypersonic nozzle design, manufacture and validation: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43( 6): 526160 (in Chinese). | |
2 | 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43( 2): 113- 131. |
DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43?( 2): 113- 131 (in Chinese). | |
3 | 胡敏, 郭强, 习向东, 等. 玻璃钢管材新型无损检测研究进展[J/OL]. 材料导报, ( 2023-08-01). . |
HU M, GUO Q, XI X D, et al. Research progress of new nondestructive testing of GFRP pipes[J/OL]. Materials Reports, ( 2023-08-01). (in Chinese). | |
4 | 郑凯, 武兴, 李俊燕, 等. 高温下金属材料厚度的激光超声检测研究[J]. 机械工程学报, 2021, 57( 10): 21- 27. |
ZHENG K, WU X, LI J Y, et al. Laser ultrasonic evaluation of metallic material thickness at high temperature[J]. Journal of Mechanical Engineering, 2021, 57( 10): 21- 27 (in Chinese). | |
5 | 刘永强, 杨世锡, 甘春标. 一种基于激光超声的薄层金属材料厚度检测方法研究[J]. 振动与冲击, 2018, 37( 12): 147- 152. |
LIU Y Q, YANG S X, GAN C B. Thickness measurement for thin metal material with the use of laser generated ultrasound[J]. Journal of Vibration and Shock, 2018, 37( 12): 147- 152 (in Chinese). | |
6 | HUAN H T, MANDELIS A, LIU L X, et al. Application of linear frequency modulated laser ultrasonic radar in reflective thickness and defect non-destructive testing[J]. NDT & E International, 2019, 102: 84- 89. |
7 | WANG S J, LI Z C, LI P Z, et al. Numerical and experimental evaluation of the receiving performance of meander-line coil EMATs[J]. Nondestructive Testing and Evaluation, 2014, 29( 4): 269- 282. |
8 | TITTMANN B R, BATISTA C F G, TRIVEDI Y P, et al. State-of-the-art and practical guide to ultrasonic transducers for harsh environments including temperatures above 2120 °F (1000 ℃) and neutron flux above 10 13 n/cm 2 [J]. Sensors, 2019, 19( 21): 4755. |
9 | 付琳, 高永康, 高晶敏. 背衬参数对厚度模压电换能器特性的影响[J]. 声学学报, 2019, 44( 2): 251- 257. |
FU L, GAO Y K, GAO J M. Influence of the backing parameters on the performance of thickness mode piezoelectric transducer[J]. Acta Acustica, 2019, 44( 2): 251- 257 (in Chinese). | |
10 | CHIMENTI D E. Review of air-coupled ultrasonic materials characterization[J]. Ultrasonics, 2014, 54( 7): 1804- 1816. |
11 | YAMAGUCHI Y, SATO Y. Simultaneous nondestructive estimation of thickness and longitudinal wave velocity of adhesive layers in adhesive joints through air-coupled ultrasonic testing[J]. NDT & E International, 2023, 138: 102905. |
12 | JAYAKUMAR A, BALACHANDRAN A, MANI A, et al. Falling film thickness measurement using air-coupled ultrasonic transducer[J]. Experimental Thermal and Fluid Science, 2019, 109: 109906. |
13 | 刘永强, 杨世锡, 刘学坤. 基于激光超声的金属构件表面微裂纹定量检测技术研究[J]. 振动与冲击, 2019, 38( 19): 14- 19. |
LIU Y Q, YANG S X, LIU X K. Micro-crack quantitative detection technique for metal component surface based on laser ultrasonic[J]. Journal of Vibration and Shock, 2019, 38( 19): 14- 19 (in Chinese). | |
14 | 颜江涛, 赵纪元, 訾艳阳, 等. 激光超声信号变分模态分解与裂纹定量检测[J]. 仪器仪表学报, 2023, 44( 1): 223- 230. |
YAN J T, ZHAO J Y, ZI Y Y, et al. Variational mode decomposition of laser ultrasonic signal and crack quantitative detection[J]. Chinese Journal of Scientific Instrument, 2023, 44( 1): 223- 230 (in Chinese). | |
15 | CHEN F, ZHANG K, JIANG H J, et al. Thickness evaluations for thin coatings using laser scanning thermography[J]. NDT & E International, 2023, 137( 17): 102817. |
16 | 贾中青, 张振振, 姬光荣. 离焦量对激光超声测厚信号影响的理论和实验研究[J]. 红外与激光工程, 2017, 46( S1): 13- 18. |
JIA Z Q, ZHANG Z Z, JI G R. Theoretical and experimental study on effect of defocusing amount on thickness measurement based on laser ultrasound[J]. Infrared and Laser Engineering, 2017, 46( S1): 13- 18 (in Chinese). | |
17 | 曹建树, 罗振兴, 姬保平. 应用微分算法处理特种管道测厚激光超声信号[J]. 光学精密工程, 2017, 25( 5): 1197- 1205. |
CAO J S, LUO Z X, JI B P. Laser ultrasonic signal processing by differential algorithm in special pipeline thickness measurement[J]. Optics and Precision Engineering, 2017, 25( 5): 1197- 1205 (in Chinese). | |
18 | PEI N, ZHAO B, BOND L J, et al. Analysis of the directivity of longitudinal waves based on double-fold coil phased EMAT[J]. Ultrasonics, 2022, 125: 106788. |
19 | 石文泽, 陈巍巍, 卢超, 等. 高温铝合金电磁超声检测回波特性及因素分析[J]. 航空学报, 2020, 41( 12): 423854. |
SHI W Z, CHEN W W, LU C, et al. Characteristics and factor analyses for electromagnetic ultrasonic detection echoes in high-temperature aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41( 12): 423854 (in Chinese). | |
20 | 吴锐, 石文泽, 卢超, 等. 航空不锈钢薄板电磁超声SH导波检测定量分析方法[J]. 航空学报, 2022, 43( 9): 425888. |
WU R, SHI W Z, LU C, et al. Quantitative analysis method for electromagnetic ultrasonic SH guided wave detection of aerospace stainless steel sheet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43( 9): 425888 (in Chinese). | |
21 | 蔡智超, 李豪, 倪惠发, 等. 电磁超声非线性效应表征的Lyapunov指数分析方法[J]. 仪器仪表学报, 2022, 43( 10): 223- 232. |
CAI Z C, LI H, NI H F, et al. Electromagnetic ultrasonic nonlinear effects for the characterization of Lyapunov exponential analytical method[J]. Chinese Journal of Scientific Instrument, 2022, 43( 10): 223- 232 (in Chinese). | |
22 | 唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41( 9): 98- 109. |
TANG Z F, SUN X T, ZHANG P F, et al. Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41( 9): 98- 109 (in Chinese). | |
23 | 徐立军, 刘福禄, 丁一清, 等. 基于电磁超声横波的管道剩余厚度检测[J]. 北京航空航天大学学报, 2022, 48( 9): 1767- 1773. |
XU L J, LIU F L, DING Y Q, et al. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48( 9): 1767- 1773 (in Chinese). | |
24 | ISLA J, CEGLA F. Optimization of the bias magnetic field of shear wave EMATs[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63( 8): 1148- 1160. |
25 | 刘继伦, 刘素贞, 金亮, 等. 用于测厚和裂纹检测的正交横波电磁超声换能器仿真分析及实验研究[J]. 电工技术学报, 2022, 37( 11): 2686- 2697. |
LIU J L, LIU S Z, JIN L, et al. Simulation and experiment of orthogonal shear waves with electromagnetic acoustic transducer for thickness measurement and crack detection[J]. Transactions of China Electrotechnical Society, 2022, 37( 11): 2686- 2697 (in Chinese). | |
26 | 程进杰, 石文泽, 卢超, 等. 脉冲压缩技术在高温连铸电磁超声测厚应用研究[J]. 机械工程学报, 2023, 59( 8): 20- 31. |
CHENG J J, SHI W Z, LU C, et al. Application of pulse compression technology in electromagnetic ultrasonic thickness measurement of high-temperature continuous casting[J]. Journal of Mechanical Engineering, 2023, 59( 8): 20- 31 (in Chinese). | |
27 | 何盼, 卢超, 石文泽, 等. 铝合金激光超声表面检测中EMAT接收性能对比[J]. 航空学报, 2023, 44( 16): 428085. |
HE P, LU C, SHI W Z, et al. Comparation of reception performance of EMATs in laser ultrasonic surface detection of aluminum alloys[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44( 16): 428085 (in Chinese). | |
28 | 张鹏辉, 赵扬, 李鹏, 等. 基于有限元法的激光声磁检测系统优化研究[J]. 红外与激光工程, 2022, 51( 7): 3788/IRLA20210533. |
ZHANG P H, ZHAO Y, LI P, et al. Optimization of the laser-EMAT detection system based on FEM[J]. Infrared and Laser Engineering, 2022, 51( 7): 3788/IRLA 20210533 (in Chinese). | |
29 | 胡松涛, 石文泽, 卢超, 等. 高速铁路道岔尖轨轨底伤损SH导波原位检测方法研究[J]. 机械工程学报, 2021, 57( 18): 2- 14. |
HU S T, SHI W Z, LU C, et al. Research on In-situ detection of damage in the high-speed railway turnout bottom based on shear horizontal guided wave[J]. Journal of Mechanical Engineering, 2021, 57( 18): 2- 14 (in Chinese). | |
30 | TKOCZ J, GREENSHIELDS D, DIXON S. High power phased EMAT arrays for nondestructive testing of As-cast steel[J]. NDT & E International, 2018, 102: 47- 55. |
31 | 谷艳红, 张振振, 高先和, 等. 激光超声结合电磁超声在铝板无损检测中的应用研究[J]. 中国激光, 2020, 47( 5): 0504002. |
GU Y H, ZHANG Z Z, GAO X H, et al. Application of nondestructive detection of aluminum using laser ultrasonic technology and EMAT method[J]. Chinese Journal of Lasers, 2020, 47( 5): 0504002 (in Chinese). | |
32 | SGARBI M, COLLA V, CATENI S, et al. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs[J]. ISA Transactions, 2012, 51( 1): 181- 188. |
33 | ZENG W, QI S K, LIU L, et al. Research on laser-generated Rayleigh waves with angled surface crack by finite element method[J]. Optik, 2018, 181: 57- 62. |
34 | CHENG A, MURRAY T W, ACHENBACH J D. Simulation of laser-generated ultrasonic waves in layered plates[J]. Acoustical Society of America Journal, 2001, 110( 2): 848- 855. |
35 | SUI H, LI K S, ZHU Z Y, et al. Numerical simulation of internal defect imaging with the longitudinal wave generated by laser induced ultrasonic array[J]. Modern Physics Letters B, 2020, 35( 6): 2150103. |
36 | 张小凤, 尚志远. 金属中激光超声信号的频谱分析[J]. 压电与声光, 1999, 21( 2): 13- 16. |
ZHANG X F, SHANG Z Y. Analyzing the spectrum of photoacoustic signal in metals[J]. Piezoelectrics & Acoustooptics, 1999, 21( 2): 13- 16 (in Chinese). | |
37 | SHI W Z, TONG Y S, LU C, et al. Improving laser-EMAT ultrasonic energy conversion efficiency using surface constraint mechanism[J]. Ultrasonics, 2022, 124: 106729. |
38 | 李泽欢. 基于电磁声谐振的材料涂层质量检测[D]. 天津: 河北工业大学, 2019. |
LI Z H. Quality inspection of coating based on electromagnetic acoustic resonance[D]. Tianjin: Hebei University of Technology, 2019 (in Chinese). |
/
〈 |
|
〉 |