ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Development of high performance collaborative combat UAVs
Received date: 2024-02-20
Revised date: 2024-02-26
Accepted date: 2024-02-29
Online published: 2024-03-11
The concepts of collaborative combat Unmanned Aerial Vehicles (UAVs) have been widely discussed in recent years. Entities such as the United States, Russia, and Europe are competing in the development of UAVs featured by enhanced collaboration and high performance. A cutting edge hotspot for investigation on the corresponding key technologies is forming in the region of aviation equipment. The differences in usages, mission capabilities, and technological features of collaborative combat UAVs compared to traditional UAVs have sparked new discussions and reconsiderations. This paper traces the evolution history of military UAVs by focusing on the transformation of human-machine relationships and the expansion of UAVs’ capabilities. The development requirements emerged in the context of great power competition for future UAVs, as well as the capability demands and key technologies which give definitions on high-performance collaborative combat UAVs, are analyzed. Moreover, the design orientations that worth attention, such as autonomy/collaboration, decentralization/centralization and high performance/low cost, are discussed. Recommendations for future development of high-performance collaborative combat UAVs are also proposed.
Haifeng WANG . Development of high performance collaborative combat UAVs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 530304 -530304 . DOI: 10.7527/S1000-6893.2024.30304
1 | 史文卿, 王海峰, 陈海昕. 战斗机—无人机编组协同系统需求捕获与验证[J]. 系统工程与电子技术, 2023, 45(1): 108-118. |
SHI W Q, WANG H F, CHEN H X. Fighter-drone teaming system requirements elicitation and verification[J]. Systems Engineering and Electronics, 2023, 45(1): 108-118 (in Chinese). | |
2 | GUNZINGER M, REHBERG C, COHN J. An air force for an era of great power competition[R]. Washington, D. C.: Center for Strategic and Budgetary Assessments, 2019. |
3 | Министерство O, Ф Российской. Концепция применения комплексов с беспилотными летательными аппаратами в ВС РФ на период до 2025 года[R]. Москва: Министерство обороны Российской Федерации, 2009 (in Russian). |
4 | Bus Air. Future Combat Air System (FCAS): Shaping the future of air power[EB/OL]. (2017-08-15) [2024-01-27]. . |
5 | 李航航, 杨建元. 无人机作战使用与技术发展趋势[J]. 航空兵器, 2003, 10(4): 35-38. |
LI H H, YANG J Y. Operational use and technical development trend of UAV[J]. Aero Weaponry, 2003, 10(4): 35-38 (in Chinese). | |
6 | 沈陶然, 桑隽永. 国外无人机装备发展现状及典型作战模式综述[J]. 新型工业化, 2018, 8(5): 94-97. |
SHEN T R, SANG J Y. A review of the development status and typical operational mode of UAV equipment in foreign countries[J]. The Journal of New Industrialization, 2018, 8(5): 94-97 (in Chinese). | |
7 | UAS Task Force Airspace Integration Integrated Product Team. UAS airspace integration plan—Version 2.0 [R]. Washington, D. C.: Department of Defense, 2011. |
8 | Airforce Technology. Wing Loong unmanned aerial vehicle (UAV)[EB/OL]. (2021-02-02) [2024-01-27]. . |
9 | Office of the Secretary of Defense. Unmanned aerial vehicles roadmap: 2000—2025[R]. Washington, D. C.: Office of the Secretary of Defense, 2001. |
10 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2002—2027[R]. Washington, D. C.: Office of the Secretary of Defense, 2002. |
11 | Office of the Under Secretary of Defense (Acquisition Technology And Logistics). Unmanned systems integrated roadmap: FY2011—2036[R]. Washington, D. C.: Office of the Under Secretary of Defense, 2011. |
12 | DOWNS E. Jane’s avionics: 2010—2011[R]. Jane’s Pub, 2012. |
13 | DOWNS E. Jane’s avionics: 2006—2007[R]. Jane’s Pub, 2007. |
14 | Airforce Technology. nEUROn unmanned combat air vehicle (UCAV) demonstrator[EB/OL]. (2014-06-11)[2024-01-27]. . |
15 | Office of the Secretary of Defense. Unmanned aircraft systems roadmap: 2005—2030[R]. Washington, D. C.: Office of the Secretary of Defense, 2005. |
16 | Defense Science Board. Defense science board task force report: The role of autonomy in DoD systems[R]. Washington, D. C.: Defense Science Board, 2012. |
17 | USAF Office of the Chief Scientist. Autonomous horizons: System autonomy in the air force—A path to the future—volume I: Human-autonomy teaming[R]. Washington, D. C.: Department of the Air Force, 2015. |
18 | BLACK J, LYNCH A, GUSTAFSON K, et al. Multi-domain integration in defense[R]. Cambridge: Rand Corporation Europe, 2022. |
19 | O’ROURKE R. Renewed great power competition: Implications for defense-issues for congress[R]. Washington, D. C.: Congressional Research Service, 2021. |
20 | Air Superiority 2030 (AS 2030) Enterprise Capability Collaboration Team (ECCT). Air superiority 2030 flight plan[R]. Washington, D.C.: Department of the Air Force, 2016. |
21 | LEE C. The next frontier: UAVs for great power conflict: Part I, penetrating strike[R]. Mitchell: Mitchell Institute, 2022. |
22 | Air Force Research Laboratory. Munitions directorate overview to industry[EB/OL]. (2015-02-02) [2024-01-27]. !&&p=a7938444325d9af2JmltdHM9MTcwNjQwMDAwMCZpZ3VpZD0wN2Y5ZjJjOC02MjMwLTY2YTEtMWJhMC1mYzRhNjMxZTY3MjkmaW5zaWQ9NTE4MA&ptn=3&ver=2&hsh=3&fclid=07f9f2c8-6230-66a1-1ba0-fc4a631e6729&psq=munitions+directorate+overview+to+industry%3a10-AFRL-RW-BFI-PACA-2015&u=a1aHR0cHM6Ly93d3cuYWZybC5hZi5taWwvUlcv&ntb=1. |
23 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
24 | PENNY H. Beyond pixie dust: A framework for understanding and developing autonomy in unmanned aircraft[R]. Mitchell: Mitchell Institute, 2022. |
25 | USAF. Air force future operating concept: A view of the air force in 2035[EB/OL]. (2015-09-15) [2023-11-22]. . |
26 | Scientific Advisory Board DAF. Collaborative combat aircraft for next generation air dominance: SAF/PA Release 2022-0484[EB/OL] (2022-10-01) [2023-11-22]. . |
27 | OSBORN K. JADC2: Pentagon breaks through with networked wardrones, ships, stealth jets & tanks will attack together[EB/OL]. (2023-02-23) [2023-11-14]. . |
28 | CURTIS E. Lemay center for doctrine development and education. Reachback and distributed operation[EB/OL].(2016-07-20) [2023-11-14]. . |
29 | DARPA. Strategic technology office outlines vision for “mosaic warfare”[EB/OL]. (2017-08-04) [2023-12-03]. . |
30 | 远望智库. 俄乌冲突中俄乌双方无人机作战运用研究[R]. 远望报告, 2022. |
Techxcope. Research on the usage of UCAVs in Russia-Ukraine conflict[R]. Techxcope Report, 2022 (in Chinese). | |
31 | HELFRICH E. General atomics’ Gambit drones to have different airframes with common ‘cores’[EB/OL]. (2022-09-22) [2023-10-05]. . |
32 | 魏中成, 王海峰, 袁兵, 等. 鸭式飞机矢量喷流对大迎角气动特性的影响[J]. 航空学报, 2020, 41(12): 124434. |
WEI Z C, WANG H F, YUAN B, et al. Canard aircraft interactive behaviors between vectoring jet and aerodynamics at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124434 (in Chinese). | |
33 | 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1-25. |
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1-25 (in Chinese). | |
34 | 欧阳小平. 现代飞机液压技术[M]. 杭州: 浙江大学出版社, 2016. |
OUYANG X P. Modern hydraulics for aircrafts[M]. Hangzhou: Zhejiang University Press, 2016 (in Chinese). | |
35 | Department of the Air Force. The United States air force artificial intelligence annex to the department of defense artificial intelligence strategy[R]. Washington, D. C.: Department of the Air Force, 2019. |
36 | POPE A P, IDE J S, MI?OVI? D, et al. Hierarchical reinforcement learning for air combat at DARPA’s AlphaDogfight trials[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(6): 1371-1385. |
37 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
38 | SUTTON R S, BARTO A. Reinforcement learning: An introduction[M]. Cambridge: The MIT Press, 2014. |
39 | 吴华兴. 基于Agent的人机组合行为建模关键技术研究[D]. 西安: 西北工业大学, 2016. |
WU H X. Study on the key technologies in behavior representation for Agent-based pilot-aircraft combination[D].Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
40 | KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partially observable stochastic domains[J]. Artificial Intelligence, 1998, 101(1-2): 99-134. |
41 | XU J W, ZHANG J, YANG L Y, et al. Autonomous decision-making for dogfights based on a tactical pursuit point approach[J]. Aerospace Science and Technology, 2022, 129: 107857. |
42 | 李全军, 张安. 航空电子综合火控系统驾驶员操作程序(POP)仿真[J]. 火力与指挥控制, 2005, 30(4): 71-74. |
LI Q J, ZHANG A. Study on POP simulation for the avionics integrated fire control system[J]. Fire Control & Command Control, 2005, 30(4): 71-74 (in Chinese). | |
43 | LI T, QIN K Y, JIANG B, et al. Neural network-based robust bipartite consensus tracking control of multi-agent system with compound uncertainties and actuator faults[J]. Electronics, 2023, 12(11): 2524. |
44 | 王海峰. 战斗机保障性工程[M]. 北京: 国防工业出版社, 2023. |
WANG H F. Fighter supportability engineering[M]. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
45 | 陈志伟, 张罗庚, 方晓彤, 等. 装备体系可靠性概念、建模与预计方法研究[J]. 系统工程与电子技术, 2024, 46(6): 1975-1985. |
CHEN Z W, ZHANG L G, FANG X T, et al. Reliability concepts, modeling, and prediction methods for weapon system of systems[J]. Systems Engineering and Electronics, 2024, 46(6): 1975-1985 (in Chinese). | |
46 | 王海峰. 战斗机故障预测与健康管理技术应用的思考[J]. 航空科学技术, 2020, 31(7): 3-11. |
WANG H F. Research on application of prognostics and health management technology for fighter aircraft[J]. Aeronautical Science & Technology, 2020, 31(7): 3-11 (in Chinese). | |
47 | 王海峰, 王宏亮, 阳纯波. 航空装备保障智能化发展认识与探讨[J]. 测控技术, 2020, 39(12): 1-9, 27. |
WANG H F, WANG H L, YANG C B. Understanding and discussion on intelligence-based aviation materiel support development[J]. Measurement & Control Technology, 2020, 39(12): 1-9, 27 (in Chinese). | |
48 | 张文宇. 分布式作战与其中的航空装备[EB/OL]. (2018-09-06) [2023-11-14]. . |
ZHANG W Y. Distributed combat with its airborne equipment[EB/OL]. (2018-09-06) [2023-11-14]. (in Chinese). |
/
〈 |
|
〉 |