ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Quantitative method of smart airport evaluation index based on logic-physical framework
Received date: 2024-01-19
Revised date: 2024-02-01
Accepted date: 2024-03-08
Online published: 2024-03-11
Supported by
National Key Research and Development Project(2020YFB1600102);National Natural Science Foundation of China(42074039);Opening Foundation of Key Laboratory of Transport Industry of Comprehensive Transportation Theory (Nanjing Modern Multimodal Tranportation Laboratory)(MTF2023013)
To address the issue of the inability to quantitatively express the basic service flow index in evaluating the level of airport intelligence, this study proposes a logic-physical framework-based smart airport evaluation system. Through a comparison and analysis of existing evaluation methods, the process-oriented approach is adopted to construct a framework for smart airport systems. On this basis, each basic indicator within the framework is defined mathematically and described quantitatively according to two different categories of qualitative index and quantitative index. The results of the study show that the process-oriented evaluation system is also applicable to the construction of intelligent evaluation system for airports, and it can reflect the business flows and subsystems of intelligent airports comprehensively from the logical framework to the physical framework. The use of different categorical quantification methods for the underlying metrics based on their mathematical descriptions helps to portray a more accurate and comprehensive picture of the degree of intelligence in airports. The quantitative analysis of the basic indicators of A airport found that the basic indicators of flight area management account for 20% of percentage type indicator, 34.3% of numerical type indicator, 45.7% of yes or no type indicator, 13.3% of percentage type indicator, 13.3% of numerical type indicator and 73.4% of yes or no type indicator of the basic indicators of land side traffic management Each indicator can show the specific quantization score, indicating that the quantitative method proposed can be applied to the quantization processing of all airport traffic.
Rui ZHANG , Wei HUANG , Tao MA . Quantitative method of smart airport evaluation index based on logic-physical framework[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 30199 -030199 . DOI: 10.7527/S1000-6893.2024.30199
1 | 张旭. 民航发展现状及未来发展策略[J]. 中国航务周刊, 2023(51): 61-63. |
ZHANG X. Present situation and future development strategy of civil aviation[J]. China Shipping Gazette, 2023(51): 61-63 (in Chinese). | |
2 | 阎燕. 民航业发展现状及未来民航经济发展趋势[J]. 中国集体经济, 2021(20): 55-56. |
YAN Y. Present situation of civil aviation industry and future development trend of civil aviation economy[J]. China Collective Economy, 2021(20): 55-56 (in Chinese). | |
3 | 王同琛, 王丽欣, 刘恒飞. 从北京大兴国际机场谈GIS的发展前景[J]. 测绘与空间地理信息, 2019, 42(12): 149-151. |
WANG T C, WANG L X, LIU H F. Talking about the development prospect of GIS from Beijing Daxing international airport[J]. Geomatics & Spatial Information Technology, 2019, 42(12): 149-151 (in Chinese). | |
4 | 刘成肖. 四型机场评价方法之探讨[J]. 中国设备工程, 2023(4): 249-251. |
LIU C X. Discussion on evaluation method of four types of airports[J]. China Plant Engineering, 2023(4): 249-251 (in Chinese). | |
5 | 吴程程, 李彤阳, 张建. 中小机场推进四型机场建设探讨[J]. 民航管理, 2022(10): 24-27. |
WU C C, LI T Y, ZHANG J. Discussion on how to promote four characteristic airport construction at smal and medium-sized airports[J]. Civil Aviation Management, 2022(10): 24-27 (in Chinese). | |
6 | KHADONOVA S V, UFIMTSEV A V, DYMKOVA S S. “Digital smart airport” system based on innovative navigation and information technologies[C]∥2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). Piscataway: IEEE Press, 2020: 1-6. |
7 | 杨光. 基于数字化转型的A集团智慧机场建设研究[D]. 济南: 山东大学, 2023. |
YANG G. Research on the smart airport construction of group A based on digital transformation[D].Jinan: Shandong University, 2023 (in Chinese). | |
8 | BEZERRA G C L, GOMES C F. Performance measurement in airport settings: A systematic literature review[J]. Benchmarking, 2016, 23(4): 1027-1050. |
9 | LUPO T. Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily[J]. Journal of Air Transport Management, 2015, 42: 249-259. |
10 | NAGY E, CSISZáR C. Revealing influencing factors of check-in time in air transportation[J]. Acta Polytechnica Hungarica, 2017, 14(4): 225-243. |
11 | G??MEN E. Smart airport: Evaluation of performance standards and technologies for a smart logistics zone[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(7): 480-490. |
12 | 王红岩, 许雅玺. 基于层次分析法的机场服务质量评价[J]. 科技和产业, 2015, 15(6): 64-67. |
WANG H Y, XU Y X. Airport service quality evaluation based on AHP model[J]. Science Technology and Industry, 2015, 15(6): 64-67 (in Chinese). | |
13 | 牛军锋, 孙静娟, 李生厚, 等. 基于“综合赋权” 模糊物元模型的机场运行安全评价[J]. 火力与指挥控制, 2017, 42(4): 101-104, 109. |
NIU J F, SUN J J, LI S H, et al. Airport operation safety assessment based on fuzzy matter element model with comprehensive weighting[J]. Fire Control & Command Control, 2017, 42(4): 101-104, 109 (in Chinese). | |
14 | 涂积奇, 陆亚芳, 杨敏, 等. 面向过程的航天产品供应商质量保证能力评价方法研究与实践[J]. 中国质量与标准导报, 2022(2): 64-68. |
TU J Q, LU Y F, YANG M, et al. Research and practice of process quality assurance ability evaluation method for aerospace product supplier[J]. China Quality and Standards Review, 2022(2): 64-68 (in Chinese). | |
15 | 谭凯中, 秦勃, 何亚文. 面向过程的海洋时空数据分布式存储与并行检索[J]. 中国海洋大学学报(自然科学版), 2021, 51(11): 94-101, 134. |
TAN K Z, QIN B, HE Y W. Process-oriented distributed storage and retrieval of ocean spatiotemporal data[J]. Periodical of Ocean University of China, 2021, 51(11): 94-101, 134 (in Chinese). | |
16 | 窦雅娟. 基于面向对象与深度学习方法的遥感影像自动提取技术研究[J]. 数字通信世界, 2023(7): 34-36. |
DOU Y J. Research on remote sensing image automatic extraction technology based on object oriented and deep learning methods[J]. Digital Communication World, 2023(7): 34-36 (in Chinese). | |
17 | 魏小东. 中国铁水联运信息系统物理框架设计[J]. 科技视界, 2016(21): 244. |
WEI X D. Physical framework design of China hot metal intermodal transport information system[J]. Science & Technology Vision, 2016(21): 244 (in Chinese). | |
18 | SAATY T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83. |
19 | HWANG C L, YOON K. Methods for multiple attribute decision making[M]∥Multiple Attribute Decision Making. Berlin: Springer, 1981: 58-191. |
20 | 邢刚. 大型机场构建智慧数字电网的顶层设计研究[J]. 民航学报, 2022, 6(S1): 147-150. |
XING G. Research on the top-level design of smart digital power grid in large airports[J]. Journal of Civil Aviation, 2022, 6(S1): 147-150 (in Chinese). | |
21 | 金雷, 王银银, 傅惠, 等. 基于模糊层次分析法的机场陆侧智慧交通系统感知水平评价[J]. 科学技术与工程, 2022, 22(8): 3365-3372. |
JIN L, WANG Y Y, FU H, et al. Perception level evaluation of airport land-side intelligent traffic system based on fuzzy analytic hierarchy process[J]. Science Technology and Engineering, 2022, 22(8): 3365-3372 (in Chinese). |
/
〈 |
|
〉 |