Reviews

Recent progress in structural integrity of novel materials and advanced techniques

  • Zhijie YU ,
  • Yupei GUO ,
  • Hanbin SUN ,
  • Jingnan ZHANG ,
  • Xiasheng SUN
Expand
  • 1.Chinese Aeronautical Establishment,Beijing 100029,China
    2.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China

Received date: 2023-11-19

  Revised date: 2024-01-06

  Accepted date: 2024-01-30

  Online published: 2024-03-11

Supported by

Aeronautical Science Foundation of China(2023M053004002)

Abstract

Structural integrity is not only the primary factor determining the safety and lifespan of aeronautical structures, but poses significant challenge to the application of novel materials, structures, and techniques in the field of aviation. Clarifying and enhancing the structural integrity performance of advanced materials and structures can facilitate the utilization of the outstanding capabilities in aviation structures, thereby achieving more reliable, efficient, and economical aviation structural goals. The present paper systematically reviews the main achievements and recent work conducted by member countries of the International Committee on Aeronautical Fatigue and Structural Integrity (ICAF) in the past years of this field. Moreover, this paper introduces the recent advancements made by scholars from various fields in terms of the fatigue life of advanced materials, structures, and techniques, to stimulate continuous attention of researchers in aeronautical structural field towards the progress and issues on the aviation structural integrity. On this basis, combining with the extensive progress made in material, structural, and techniques domains in recent years, along with emerging demands for aeronautical structural performance, this paper also presents suggestions and prospects for the fatigue research of novel materials, structures, and techniques, as well as the design of future aeronautical structures, in order to further promote the development of this field.

Cite this article

Zhijie YU , Yupei GUO , Hanbin SUN , Jingnan ZHANG , Xiasheng SUN . Recent progress in structural integrity of novel materials and advanced techniques[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 29888 -029888 . DOI: 10.7527/S1000-6893.2024.29888

References

1 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报202142(5): 524651.
  WANG B W, CHEN X M, SU Y L, et al. Progress and prospect of fatigue and structural integrity research in China’s aviation industry[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524651 (in Chinese).
2 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报202142(5): 524791.
  SUN X S, SU S P, SUN H B, et al. Current status and prospect of foreign aviation fatigue research[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524791 (in Chinese).
3 崔德刚, 鲍蕊, 张睿, 等. 飞机结构疲劳与结构完整性发展综述[J]. 航空学报202142(5): 524394.
  CUI D G, BAO R, ZHANG R, et al. Review of the development of aircraft structural fatigue and structural integrity[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524394 (in Chinese).
4 孙侠生, 李小飞. 与时偕行:航空科技国际交流与合作[M]. 北京: 航空工业出版社, 2021: 249-263.
  SUN X S, LI X F. Keeping pace with the times: International exchange and cooperation in aviation technology[M]. Beijing: Aviation Industry Press, 2021: 249-263 (in Chinese).
5 NEZHADFAR P D, THOMPSON S, SAHARAN A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior[J]. Additive Manufacturing202147: 102292.
6 MAIN B, DIXON B, JONES M, et al. Microstructure and surface finish influences on AA7085-T7452 small fatigue crack growth rates[J]. Engineering Failure Analysis2022141: 106628.
7 MAIN B, JONES M, DIXON B, et al. On small fatigue crack growth rates in AA7085-T7452[J]. International Journal of Fatigue2022156: 106704.
8 NEWMAN J C, WALKER K F. Fatigue crack growth on several materials under single-spike overloads and aircraft spectra during constraint-loss behavior[J/OL]. Materials Performance and Characterization, (2024-01-26)[2024-02-20]. .
9 GUILLAUME M. National review of Switzerland[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
10 DASH S S, LI D J, ZENG X Q, et al. Cyclic deformation behavior and fatigue life prediction of an automotive cast aluminum alloy: a new method of determining intrinsic fatigue toughness[J]. Fatigue & Fracture of Engineering Materials & Structures202245(3): 725-738.
11 DASH S S, LI D J, ZENG X Q, et al. Heterogeneous microstructure and deformation behavior of an automotive grade aluminum alloy[J]. Journal of Alloys and Compounds2021870: 159413.
12 DASH S S, LI D J, ZENG X Q, et al. Low-cycle fatigue behavior of Silafont?-36 automotive aluminum alloy: Effect of negative strain ratio[J]. Materials Science and Engineering: A2022852: 143701.
13 SCHIMB?CK D, MAIR P, KASERER L, et al. An improved process scan strategy to obtain high-performance fatigue properties for Scalmalloy?[J]. Materials & Design2022224: 111410.
14 FANTERIA D. National review of Italy[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
15 LIN S, DENG Y L, TANG J G, et al. Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy[J]. Materials Science and Engineering: A2019745: 63-73.
16 YANG G, LI S, FU D. Fatigue properties of AL/AL-MG alloy laminated materials for the applications to railway tank cars[J]. International Journal of Fatigue2019122: 173-183.
17 CORDEIRO R M. O efeito de retardo devido a sobrecargas na propaga??o de trinca por fadiga (in Portuguese)[D]. S?o José dos Campos: Aeronautics Institute of Technology, 2021: 9-10.
18 MAGALH?ES A. Crack growth retardation models under load interaction[D]. S?o José dos Campos: Aeronautics Institute of Technology, 2022: 1.
19 STONAKER K, BAKUCKAS J R, ZHANG T, et al. Characterization of MSD in emerging metallic structures in fuselage lap joints[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023: 101.
20 CHAVES C. National review of Brazil[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
21 WANG B W, QIAN C C, BAI C Y, et al. Study on impact fatigue test and life prediction method of TC18 titanium alloy[J]. International Journal of Fatigue2023168: 107391.
22 WANG X, LI S, HAN Y, et al. Visual assessment of special rod-like α-Ti precipitates within the in situ TiC crystals and the mechanical responses of titanium matrix composites[J]. Composites Part B: Engineering2022230: 109511.
23 KONGSHAVN I, BARTER S A, SORENSEN L. Measuring small fatigue crack growth with the aid of marker bands in recrystallized annealed Ti6Al4V[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
24 ALMEIDA G M J, CARDOSO R A, GARCIA M A, et al. Four actuators fretting fatigue rig and tests with cyclic normal load for Ti-6Al-4V[J]. Theoretical and Applied Fracture Mechanics2022119: 103292.
25 ODAKA T. National review of Japan[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
26 SUZUKI S, SAKAGUCHI M. Fatigue crack retardation associated with creep deformation induced by a tension hold in a single crystal Ni-base superalloy[J]. Scripta Materialia2020178: 346-350.
27 DE LUCA D M, HAMILTON A R, REED P A S. Influence of build orientation on high temperature fatigue crack growth mechanisms in Inconel 718 fabricated by laser powder bed fusion: Effects of temperature and hold time[J]. International Journal of Fatigue2023170: 107484.
28 YANG Y F, HU H Y, MIN L, et al. Failure mechanism and life correlation of Inconel 718 in high and very high cycle fatigue regimes[J]. International Journal of Fatigue2023175: 107764.
29 ZHAO Y, JIANG R, HARTE A, et al. Characterisation of strain localisation under cyclic loading at 450 ℃ by SEM-DIC in a PM Ni-based superalloy[J]. Materials Science and Engineering: A2022849: 143464.
30 KIM D, JIANG R, REED P A S. Microstructural and oxidation effects on fatigue crack initiation mechanisms in a turbine disc alloy[J]. Journal of Materials Science202358(4): 1869-1885.
31 TAN Y G, BULL D J, JIANG R, et al. Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperature[J]. Materials Science and Engineering: A2021805: 140592.
32 TAN Y, GAO N, REED P. Oxidation induced crack closure in a nickel base superalloy: A novel phenomenon and mechanism assessed via combination of 2D and 3D characterization[J]. Materials Science and Engineering: A2022861: 144311.
33 田甜, 郝志博, 贾崇林, 等. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报201955(10): 1260-1272.
  TIAN T, HAO Z B, JIA C L, et al. Microstructure and properties of a new third generation powder metallurgy superalloy FGH100L[J]. Acta Metallurgica Sinica201955(10): 1260-1272 (in Chinese).
34 DONG J, LI J. Effect of femtosecond laser drilling on the fatigue properties of the third-generation single-crystal superalloy DD9[J]. Journal of Materials Engineering and Performance202332: 7428-7438.
35 PATRICK M A, LALIBERTé J F, WANG X. Investigation of the tensile/compressive residual stresses in AISI 4340 steel under low-cycle fatigue loading[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023: 57.
36 涂强, 范海平. YG8硬质合金冲击疲劳断口形貌及冲击寿命统计分析方法[J]. 热加工工艺202251(6): 74-78.
  TU Q, FAN H P. Impact fatigue fracture morphology and statistical analysis method of impact life for YG8 cemented carbide[J]. Hot Working Technology202251(6): 74-78 (in Chinese).
37 LIU W, CHENG Y, SUI H, et al. Microstructure-based intergranular fatigue crack nucleation model: Dislocation transmission versus grain boundary cracking[J]. Journal of the Mechanics and Physics of Solids2023173: 105233.
38 LI S, WU X, LIU R, et al. Full-range fatigue life prediction of metallic materials using Tanaka-Mura-Wu model[J]. SAE International Journal of Materials and Manufacturing202215(2): 133-154.
39 ZHANG H, SONG Z, ZHANG L, et al. Effect of hygrothermal environment on the fatigue fracture mechanism of single lap Aluminum-CFRP hybrid (riveted/bonded) joints[J]. International Journal of Fatigue2022165: 107177.
40 FREED Y. National review of Israel[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
41 BONI L, FANTERIA D, LAZZERI L, et al. Delamination onset in composite materials due to fatigue loading[J]. Journal of Composite Materials202256(16): 2585-2598.
42 MONTICELI F M. Fadiga em compósitos híbridos processados via RTM: influência da interface híbrida na delamina??o nos modos I e II(in Portuguese)[D]. S?o Paulo: State University of S?o Paulo, 2021: 78-86.
43 TU W J, PASCOE J A, ALDERLIESTEN R C. Experimental investigation of planar delamination behaviour of composite laminates under out-of-plane loading[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023: 22.
44 BIAGINI D, PASCOE J A, ALDERLIESTEN R C. Experimental investigation of fatigue after impact damage growth in CFRP[J]. Procedia Structural Integrity202242: 343-350.
45 VAN DER PANNE M, PASCOE J A. Fatigue delamination growth-Is UD testing enough?[J]. Procedia Structural Integrity202242: 449-456.
46 BIAGINI D, PASCOE J A, ALDERLIESTEN R. Investigation of compression after impact failure in carbon fiber reinforced polymers using acoustic emission[J]. Journal of Composite Materials202357(10): 1819–1832.
47 SUN X S. National review of China[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
48 GON?ALVES V O, OSSES M, PARDINI L C. New jig adapted for compression fatigue tests on composite materials[J]. Journal of Composite Materials202357(2): 337-344.
49 GON?ALVES V O. Evaluation of static and fatigue strength in carbon fiber/epoxy composites with different levels of porosity under compression load[D]. S?o José dos Campos: Aeronautics Institute of Technology, 2022: 23-25.
50 SILVA T C, MORAES D V O, MORGADO G F M, et al. Mechanical characterization and fractographic study of the carbon/PEI composite under static and fatigue loading[J]. Mechanics of Advanced Materials and Structures2022: 1-9.
51 PANTUSO F. A Model for predicting the fatigue life of functionally graded additively manufactured metal components[D]. Kingston: Royal Military College of Canada, 2023: 49-58.
52 YAZDANI SARVESTANI H, BEAUSOLEIL C, GENEST M, et al. Architectured ceramics with tunable toughness and stiffness[J]. Extreme Mechanics Letters202039: 100844.
53 SARVESTANI H Y, VAN EGMOND D A, ESMAIL I, et al. Bioinspired stochastic design: tough and stiff ceramic systems[J]. Advanced Functional Materials202232(6): 2108492.
54 RAHIMIZADEH A, YAZDANI SARVESTANI H, LI L, et al. Engineering toughening mechanisms in architectured ceramic-based bioinspired materials[J]. Materials & Design2021198: 109375.
55 LIAO M. National review of Canada[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
56 SURESH S, LINDSTR?M S B, THORE C J, et al. Topology optimization using a continuous-time high-cycle fatigue model[J]. Structural and Multidisciplinary Optimization202061: 1011-1025.
57 SURESH S, LINDSTR?M S B, THORE C J, et al. Topology optimization for transversely isotropic materials with high-cycle fatigue as a constraint[J]. Structural and Multidisciplinary Optimization202163: 161-172.
58 HOMBERGSMEIER E. National review of Germany[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
59 FéLIX P H W, ARBELO M A. Crack growth analysis of fiber metal laminates stiffened panels[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023: 146.
60 BELEM F R. Post-buckling fatigue crack propagation on curved stiffened panels[D]. S?o José dos Campos: Aeronautics Institute of Technology, 2022: 1.
61 MAIN B. National review of Australia[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
62 TOUZET L. National review of France[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
63 BHUJANGRAO T, VEIGA F, SUáREZ A, et al. High-temperature mechanical properties of IN718 alloy: Comparison of additive manufactured and wrought samples[J]. Crystals202010(8): 689.
64 CHI W, LI G, WANG W, et al. Interior initiation and early growth of very high cycle fatigue crack in an additively manufactured Ti-alloy[J]. International Journal of Fatigue2022160: 106862.
65 LIU B, CHEN B, LU S, et al. Investigations into gas-pore effects on fatigue strength with a peridynamic approach[J]. Aerospace20229(11): 641.
66 YI M, XUE M, CONG P L, et al. Machine learning for predicting fatigue properties of additively manufactured materials[J/OL]. Chinese Journal of Aeronautics, (2023-11-07)[2024-02-20]. .
67 DANG L, HE X, TANG D, et al. A fatigue life posterior analysis approach for laser-directed energy deposition Ti-6Al-4V alloy based on pore-induced failures by kernel ridge[J]. Engineering Fracture Mechanics2023289: 109433.
68 DANG L, HE X, TANG D, et al. A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures[J]. International Journal of Fatigue2022159: 106748.
69 SHAMIR M, ZHANG X, SYED A K, et al. Predicting the effect of surface waviness on fatigue life of a wire+ arc additive manufactured Ti-6Al-4V alloy[J]. Materials202316: 5355.
70 SYED A K, PLASKITT R, HILL M, et al. Strain controlled fatigue behaviour of a wire + arc additive manufactured Ti-6Al-4V[J]. International Journal of Fatigue2023171: 107579.
71 HALLAM D. National review of UK[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
72 GADALI?SKA E, PAWLISZAK ?, MONETA G. Laser powder bed fusion and selective laser melted components investigated with highly penetrating radiation[J]. Fatigue of Aircraft Structures2021, 2021(13): 81-98.
73 MADEJSKI B, MALICKI M, CZARNEWICZ S, et al. Microstructural and mechanical properties of selective laser melted Inconel 718 for different specimen sizes[J]. Fatigue of Aircraft Structures2020, 2020(12): 15-26.
74 CHMIELEWSKA A, WYSOCKI B A, GADALI?SKA E, et al. Laser powder bed fusion (LPBF) of NiTi alloy using elemental powders: the influence of remelting on printability and microstructure[J]. Rapid Prototyping Journal202228(10): 1845-1868.
75 ZHANG Z, LI D, LI S, et al. Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si-Zr-Er modified Al-Zn-Mg-Cu alloy prepared by selective laser melting technology[J]. Materials Characterization2022194: 112459.
76 MATIAS C, DISKIN A, GOLAN O, et al. Ti-6AL-4V additive manufacturing measure of quality according to fatigue crack initiation vs. crack propagation[C]∥2022 Symposium of International Council of the Aeronautical Sciences. 2022.
77 WU X, KANZ P, MAHMOUD H, et al. Characterization of the microstructure and surface roughness effects on fatigue life using the Tanaka-Mura-Wu model[J]. Applied Sciences202111(21): 9955.
78 PENG D, JONES R, ANG A S, et al. Computing the durability of WAAM 18Ni 250 maraging steel specimens[J]. Fatigue & Fracture of Engineering Materials & Structures202245(12): 3535-3545.
79 VIITANEN T. National review of Finland[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
80 孙诗誉, 栗晓飞. 增材制造零件适航审定路径分析及启示[J]. 航空科学技术202132(10): 42-48.
  SUN S Y, LI X F. analysis of airworthiness certification path for additively manufactured parts and its implications[J]. Aviation Science and Technology202132(10): 42-48 (in Chinese).
81 KASHAEV N, KELLER S, STARON P, et al. On the prediction of fatigue crack growth based on weight functions in residual stress fields induced by laser shock peening and laser heating[J]. Fatigue & Fracture of Engineering Materials & Structures202144(12): 3463-3481.
82 KASHAEV N, VENTZKE V, HORSTMANN M, et al. Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens[J]. International Journal of Fatigue201798: 223-233.
83 TOURSANGSARAKI M, WANG H, HU Y, et al. Crystal plasticity modeling of laser peening effects on tensile and high cycle fatigue properties of 2024-T351 aluminum alloy[J]. Journal of Manufacturing Science and Engineering2021143(7): 071015.
84 Technologies Brochure LSP. Laser peen process[EB/OL]. (2017-01-01)[2024-02-20]. .
85 GUJBA A K, MEDRAJ M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening[J]. Materials20147(12): 7925-7974.
86 CARVALHO C P, LIMA M S F, PASTOUKHOV V, et al. Investigation of laser treatment as a method for fatigue crack growth retardation in aluminum alloy 2198-T851[J]. Metals202111(12): 2034.
87 BAPTISTA C A, ANTUNES A M, HEIN L R, et al. Effects of the secondary aging heat treatment T6I4 on fracture toughness and fatigue crack growth resistance of AA7050 alloy[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023: 78.
88 SANCHEZ A G, LEERING M, GLASER D, et al. Effects of ablative and non-ablative laser shock peening on AA7075-T651 corrosion and fatigue performance[J]. Materials Science and Technology202137(12): 1015-1034.
89 SANCHEZ A G, YOU C, LEERING M, et al. Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651[J]. International Journal of Fatigue2021143: 106025.
90 YOU C, SANCHEZ A G, LEERING M, et al. The effects of surface pits and intermetallics on the competing failure modes in laser shock peened AA7075-T651: Experiments and modelling[J]. International Journal of Fatigue2022155: 106568.
91 YE Y, ZHANG Y, HUANG T, et al. A critical review of laser shock peening of aircraft engine components[J]. Advanced Engineering Materials202325(16): 2201451.
92 BEHJAT A, SHAMANIAN M, TAHERIZADEH A, et al. Microstructure-electrochemical behavior relationship in post processed AISI316L stainless steel parts fabricated by laser powder bed fusion[J]. Journal of Materials Research and Technology202323: 3294-3311.
93 ALDERLIESTEN R. National review of Netherlands[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
94 KAPIDZIC Z. National review of Sweden[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
95 朱明亮, 轩福贞. 焊接结构的疲劳损伤与断裂[M]. 北京: 科学出版社, 2022: 1.
  ZHU M L, XUAN F Z. Fatigue damage and fracture of welded structures[M]. Beijing: Science Press, 2022: 1 (in Chinese).
96 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报202157(6): 26-51.
  XUAN F Z, ZHU M L, WANG G B. Review and prospect of a century of structural fatigue research[J]. Journal of Mechanical Engineering202157(6): 26-51 (in Chinese).
97 ZHANG S, LI X L, ZHANG J F, et al. High cycle fatigue behavior of inertia friction welded joint of FGH96 alloy at high temperature[J]. International Journal of Fatigue2023176: 107870.
98 HUANG S, LIU J, SHENG J, et al. High-temperature fatigue crack growth characteristics of IN718 Ni-based alloy treated by laser peening[J]. Engineering Fracture Mechanics2022276: 108922.
99 NIEPOKOLCZYCKI A. National review of Poland[C]∥Proceedings of 31st Symposium of International Committee on Aeronautical Fatigue and Structural Integrity. 2023.
100 KUBIT A, TRZEPIECI?SKI T, GADALI?SKA E, et al. Investigation into the effect of RFSSW parameters on tensile shear fracture load of 7075-t6 alclad aluminium alloy joints[J]. Materials202114(12): 3397.
101 MEYGHANI B, WU C. Progress in thermomechanical analysis of friction stir welding[J]. Chinese Journal of Mechanical Engineering202033(1): 1-33.
102 易敏, 常珂, 梁晨光, 等. 增材制造微结构演化及疲劳分散性计算[J]. 力学学报202153(12): 3263-3273.
  YI M, CHANG K, LIANG C G, et al. Microstructure evolution and fatigue dispersion calculation in additive manufacturing[J]. Acta Mechanica Sinica202153(12): 3263-3273 (in Chinese).
103 於之杰, 魏悦广. 固体跨尺度压痕标度律的研究与展望[J]. 力学学报202254(8): 2085-2100.
  YU Z J, WEI Y G. Review on the researches and prospect of the trans-scale indentation scaling law of solids[J]. Chinese Journal of Theoretical and Applied Mechanics202254(8): 2085-2100 (in Chinese).
104 於之杰, 徐碧涵, 王向盈, 等. 航空增材制造技术中的跨尺度力学研究进展[J]. 航空材料学报202343(5): 1-9.
  YU Z J, XU B H, WANG X Y, et al. Progress of cross-scale mechanics in additive manufacturing technology for aeronautical application[J]. Journal of Aerospace Materials202343(5): 1-9 (in Chinese).
Outlines

/