ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental testing of inductively coupled radiofrequency plasma thruster for atmosphere-breathing electric propulsion system
Received date: 2024-01-11
Revised date: 2024-02-08
Accepted date: 2024-02-23
Online published: 2024-02-27
Supported by
National Natural Science Foundation of China(T2221002);Hunan Provincial Natural Science Foundation(2024JJ5405)
The Atmosphere-Breathing Electric Propulsion (ABEP) technology can capture the rarefied atmosphere as the propellant for electric thrusters, potentially meeting the thrust requirements of Ultra-Low Earth Orbit (ULEO) satellites during operation without carrying any propellant from the ground. This paper designs a RadioFrequency (RF) plasma thruster through adding a nozzle and an enhanced magnetic field based on the Inductively Coupled Plasma (ICP) source. The main atmospheric components in the ULEO are nitrogen and atomic oxygen. Given the low ionization energy of atomic oxygen and its difficulty in storage and use under ground conditions, experiments were conducted on the thruster using nitrogen as the propellant with different gas flows, RF powers, and magnetic field settings.Results indicate that the use of the enhanced magnetic field can effectively improve the thrust and specific impulse of the thruster, and achieve full compensation for the sparse atmospheric drag within a certain orbital range, thus providing an effective approach for the development and application of ABEP systems.
Peng ZHENG , Jianjun WU , Yu ZHANG , Yuxuan ZHONG . Experimental testing of inductively coupled radiofrequency plasma thruster for atmosphere-breathing electric propulsion system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(21) : 130144 -130144 . DOI: 10.7527/S1000-6893.2024.30144
1 | 王艳奎. 临近空间飞行器应用前景及发展分析[J]. 国防科技, 2009, 30(2): 20-24. |
WANG Y K. An analysis on application prospects and development of near-space vehicles[J]. National Defense Technology, 2009, 30(2): 20-24 (in Chinese). | |
2 | KANSAKAR P, HOSSAIN F. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth[J]. Space Policy, 2016, 36: 46-54. |
3 | Union of Concerned Scientists. Union of concerned scientists satellite database [EB/OL].(2023-03-27) [2024-01-11]. . |
4 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619. |
5 | LLOP J, ROBERTS P, HAO Z, et al. Very low Earth Orbit mission concepts for Earth observation: Benefits and challenges[C]∥Reinventing Space Conference, 2014. |
6 | SCH?NHERR T, KOMURASAKI K, ROMANO F, et al. Analysis of atmosphere-breathing electric propulsion[J]. IEEE Transactions on Plasma Science, 2015, 43(1): 287-294. |
7 | NISHIYAMA K. Air breathing ion engine concept[C]?∥ 54th International Astronautical Congress, 2003. |
8 | DIAMANT K. Microwave cathode for air breathing electric propulsion[C]∥31st International Electric Propulsion Conference, 2009. |
9 | DIAMANT K. A 2-stage cylindrical Hall thruster for air breathing electric propulsion[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010. |
10 | JOHNSON I K, WINGLEE R, ROBERSON B R. Pulsed plasma thrusters for atmospheric operation[C]∥ 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. |
11 | G?KSEL B, MASHEK I CH. First breakthrough for future air-breathing magneto-plasma propulsion systems[J]. Journal of Physics: Conference Series, 2017, 825: 012005. |
12 | ROMANO F, CHAN Y A, HERDRICH G, et al. RF Helicon-based inductive plasma thruster (IPT) design for an atmosphere-breathing electric propulsion system (ABEP)[J]. Acta Astronautica, 2020, 176: 476-483. |
13 | ROMANO F, HERDRICH G, ROBERTS P C, et al. Inductive plasma thruster (IPT) for an atmosphere- breathing electric propulsion system: design and set in operation[C]∥36th International Electric Propulsion Conference, 2019. |
14 | ROMANO F, HERDRICH G, BINDER T, et al. Effects of applied magnetic field on IPG6-S, test-bed for an ABEP-based inductive plasma thruster (IPT) [C]?∥Proceedings of the 2018 Space Propulsion Conference, 2018. |
15 | 洪延姬, 周伟静, 王广宇. 微推力测量方法及其关键问题分析[J]. 航空学报, 2013, 34(10): 2287-2299. |
HONG Y J, ZHOU W J, WANG G Y. Methods of micro thrust measurement and analysis of its key issues[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2287-2299 (in Chinese). | |
16 | 鲁高飞. PPT的高精度微冲量测量技术研究[D]. 长沙: 国防科学技术大学, 2014. |
LU G F. Research on high-precision micro-impulse measurement technology of PPT[D].Changsha: National University of Defense Technology, 2014 (in Chinese). | |
17 | KEMP M A, KOVALESKI S D. Thrust measurements of the ferroelectric plasma thruster[J]. IEEE Transactions on Plasma Science, 2008, 36(2): 356-362. |
18 | 岑继文, 徐进良. 一种微推力测量的简化处理方法[J]. 航空学报, 2008, 29(2): 297-303. |
CEN J W, XU J L. A simplification method for micro-thrust test[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 297-303 (in Chinese). | |
19 | GRUBI?I? A N, GABRIEL S B. Development of an indirect counterbalanced pendulum optical-lever thrust balance for micro- to millinewton thrust measurement[J]. Measurement Science and Technology, 2010, 21(10): 105101. |
20 | WU J J, ZHENG P, ZHANG Y, et al. Recent development of intake devices for atmosphere-breathing electric propulsion system[J]. Progress in Aerospace Sciences, 2022, 133: 100848. |
21 | ZHENG P, WU J J, ZHANG Y, et al. A comprehensive review of atmosphere-breathing electric propulsion systems[J]. International Journal of Aerospace Engineering, 2020, 2020(1): 8811847. |
22 | ZHENG P, WU J J, ZHANG Y, et al. Simulation investigation of inductively coupled plasma generator for atmosphere-breathing electric propulsion system[J]. Acta Astronautica, 2021, 187: 236-247. |
23 | ZHENG P, WU J J, ZHANG Y, et al. Optical diagnosis of an inductively coupled plasma source for atmosphere-breathing electric propulsion system[J]. Physics of Plasmas, 2023, 30(2): 023503. |
24 | NRLMSISE. Mass spectrometer and incoherent scatter model [EB/OL]. [2024-01-11]. . |
25 | SHEN C. Rarefied gas dynamics: Fundamentals, simulations and micro flows[M]. Berlin: Springer, 2005. |
26 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. In-orbit aerodynamic coefficient measurements using SOAR (Satellite for Orbital Aerodynamics Research)[J]. Acta Astronautica, 2021, 180: 85-99. |
/
〈 |
|
〉 |