ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental and simulation of tetrafluoroethane catapult UAV
Received date: 2024-01-02
Revised date: 2024-01-19
Accepted date: 2024-02-20
Online published: 2024-02-27
Supported by
National Natural Science Foundation of China(12272414);Science and Technology Innovation Program of Hunan Province(2023RC3045)
In response to insufficient aerodynamic power in traditional Unmanned Aerial Vehicle (UAV) pneumatic catapults, a method is proposed to use tetrafluoroethane (R134a) instead of air as the pneumatic medium for catapulting UAVs. Tetrafluoroethane is characterized by its high safety, ease of undergoing phase transition for expansion with heating, and higher thermodynamic potential compared to air. The feasibility of using tetrafluoroethane for UAV catapult is validated through catapult experiments, and an aerodynamic thermodynamic numerical model is established with tetrafluoroethane as the catapult medium. After model verification, the catapult ability of compressed air and tetrafluoroethane is compared, and the impacts of high-pressure gas storage chamber volume, valve diameter, and low-pressure chamber volume on the trajectory parameters of tetrafluoroethane catapult UAVs are further explored. The results indicate that tetrafluoroethane can catapult the UAV out of the tube within milliseconds, exhibiting superior catapult abilities compared to compressed air, and is capable of catapulting UAVs with a mass of over 500 pounds(1 pound = 0.453 6 kg).When the liquid injection density is constant, the pressure of the low-pressure chamber, the acceleration of the UAV, and the catapult velocity of the UAV gradually increase with the grow in the high-pressure gas storage chamber volume, while the velocity increase gradually declines. When the numerical example increases to 500 L, the velocity increase is close to 0. While meeting the specified requirements, reducing the volume of the high-pressure gas storage chamber can decrease the pressure peak and temperature peak in the low-pressure chamber, so can ensure catapult safety. For a specific catapult system, there exists a critical release diameter for the valve; exceeding this diameter will only increase the peak acceleration instead of the UAV catapult velocity. Under unchanged conditions, appropriately increasing the volume of the low-pressure chamber effectively reduces the acceleration peak of the UAV, with a minimal decrease in catapult velocity when the UAV exits the tube.
Zhifu WANG , Shujian YAO , Zhaijun LU , Mu ZHONG , Ruifeng WANG . Experimental and simulation of tetrafluoroethane catapult UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(21) : 130085 -130085 . DOI: 10.7527/S1000-6893.2024.30085
1 | ZHU Q D, LU P, YANG Z B, et al. Model research of steam catapult launch process for carrier-based aircraft[C]∥ 2018 37th Chinese Control Conference. Piscataway: IEEE Press, 2018: 8519-8524. |
2 | 房兴波, 聂宏, 张钊, 等. 计及弹射滑车质量的某舰载无人机弹射动态响应分析[J]. 航空学报, 2018, 39(12): 222237. |
FANG X B, NIE H, ZHANG Z, et al. Dynamic response analysis on carrier-based UAV considering catapult shuttle mass[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222237 (in Chinese). | |
3 | 许勇, 颜鸿涛, 贾涛, 等. 固定翼集群无人机空中模拟对接技术[J]. 航空学报, 2023, 44(5): 326539. |
XU Y, YAN H T, JIA T, et al. Aerial simulation docking technology of fixed-wing clustering UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 326539 (in Chinese). | |
4 | 苑玉彬, 吴一全, 赵朗月, 等. 基于深度学习的无人机航拍视频多目标检测与跟踪研究进展[J]. 航空学报, 2023, 44(18): 028334. |
YUAN Y B, WU Y Q, ZHAO L Y, et al. Research progress of UAV aerial video multi-object detection and tracking based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 028334 (in Chinese). | |
5 | 刘夏, 张新敬, 李笑宇, 等. 压缩空气弹射系统实验与仿真[J]. 储能科学与技术, 2023, 12(6): 1831-1839. |
LIU X, ZHANG X J, LI X Y, et al. Experimental and simulation study of a compressed air ejection system[J]. Energy Storage Science and Technology, 2023, 12(6): 1831-1839 (in Chinese). | |
6 | 孙卫杰. 某型固定翼无人机气动弹射系统性能研究[D]. 重庆: 重庆大学, 2022: 4-5. |
SUN W J. Research on the performance of pneumatic catapult system of a fixed-wing UAV[D].Chongqing: Chongqing University, 2022: 4-5 (in Chinese). | |
7 | 刘希军, 崔哲, 高丽霞, 等. 无人机电磁弹射用直线感应电机电磁推力分析[J]. 计算机仿真, 2022, 39(8): 16-19. |
LIU X J, CUI Z, GAO L X, et al. Analysis of electromagnetic thrust of linear induction motor for electromagnetic ejection of UAV[J]. Computer Simulation, 2022, 39(8): 16-19 (in Chinese). | |
8 | BETTELLA A, MORETTO F, GEREMIA E, et al. Development and flight testing of a hybrid rocket booster for UAV assisted take off: AIAA-2013-4140[R]. Reston: AIAA, 2013. |
9 | LIVESAY P A. Investigation of capabilities and technologies supporting rapid UAV launch system development[D]. Monterey: Naval Postgraduate School, 2015. |
10 | FAHLSTROM P G, GLEASON T J. Introduction to UAV systems [M]. 4th ed. Hoboken: John Wiley & Sons, Ltd., 2012. |
11 | WANG J Q, LI T, ZHANG Z X, et al. Effect of valve on ballistic performance in supercritical CO2 pneumatic launch[J]. Journal of CO2 Utilization, 2023, 75: 102580. |
12 | 李博平,李国庆,张笈玮,等.压缩空气弹射系统内弹道特性[J].兵工学报,2021,42(12):2606-2616. |
LI B P, LI G Q, ZHANG J W, et al. Interior ballistic characteristics of compressed air ejection system[J]. Acta Armamentarii, 2021, 42(12): 2606-2616 (in Chinese). | |
13 | 刘晓龙, 马胜钢. 无人机气动弹射系统弹射性能的仿真研究[J]. 郑州大学学报(工学版), 2013, 34(5): 56-58. |
LIU X L, MA S G. Simulation research on launch performance of UAV pneumatic launch system[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(5): 56-58 (in Chinese). | |
14 | LIU X L, XIA C N, MA S G. The modeling and simulation of UAV pneumatic launch system[J]. Applied Mechanics and Materials, 2013, 299: 27-30. |
15 | 罗鑫, 李向荣, 张金忠, 等. 一种采用压缩空气弹射的冷发射系统研究[J]. 装甲兵学报, 2022, 1(5): 99-104. |
LUO X, LI X R, ZHANG J Z, et al. Research on a cold launch system with compressed air ejection[J]. Journal of Armored Forces, 2022, 1(5): 99-104 (in Chinese). | |
16 | 刘南宏, 张新敬, 徐玉杰, 等. 筒式压缩空气弹射系统内弹道性能研究[J]. 兵器装备工程学报, 2022, 43(1): 79-85. |
LIU N H, ZHANG X J, XU Y J, et al. Study on interior ballistic performance of cylindrical compressed air catapult launch system[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 79-85 (in Chinese). | |
17 | ZHANG Z, PENG Y, WEI X, et al. Research on parameter matching characteristics of pneumatic launch systems based on co-simulation[J]. The Aeronautical Journal, 2022, 126(1296): 381-400. |
18 | 鲁寨军, 王灿, 钟睦, 等. 十字开槽爆破片超高压爆破实验与仿真研究[J]. 工程爆破, 2021, 27(4): 14-21. |
LU Z J, WANG C, ZHONG M, et al. Experiment and simulation study on ultra-high pressure blasting of cruciform grooved rupture disc[J]. Engineering Blasting, 2021, 27(4): 14-21 (in Chinese). | |
19 | 谭大成. 弹射内弹道学[M]. 北京: 北京理工大学出版社, 2015: 58-61. |
TAN D C. Interior ballistics of catapults[M]. Beijing: Beijing Insititute of Technology Press, 2015: 58-61 (in Chinese). | |
20 | 沈维道, 童钧耕. 工程热力学[M]. 5版. 北京: 高等教育出版社, 2016. |
SHEN W D, TONG J G. Engineering thermodynamics[M]. 5th ed. Beijing: Higher Education Press, 2016 (in Chinese). | |
21 | LI C L, WEN J, WANG S M, et al. Thermodynamic analysis on rapid pressurization of supercritical CO2 for pneumatic launch performance[J]. Journal of CO2 Utilization, 2021, 53: 101710. |
22 | YAO H X, WEI X Z, YE H. Supercritical carbon dioxide as a new working medium for pneumatic launch: A theoretical study[J]. Defence Technology, 2021, 17(4): 1296-1306. |
/
〈 |
|
〉 |