Solid Mechanics and Vehicle Conceptual Design

Fully-coupled dynamics for plate-type satellite based on geometric mechanics

  • Qian CAO ,
  • Huayi LI
Expand
  • School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
E-mail: lihuayi@hit.edu.cn

Received date: 2023-10-30

  Revised date: 2023-12-18

  Accepted date: 2024-02-04

  Online published: 2024-02-27

Supported by

National Natural Science Foundation of China(62303138);Shanghai Aerospace Science and Technology Innovation Fund(SAST2021-030)

Abstract

This paper focuses on the structural characteristics of plate-type satellites and establishes attitude-orbit-structure coupling dynamic equations in the Euler-Lagrange and Hamilton forms using Lagrange mechanics and Hamilton mechanics on the Lie group, respectively. This method simultaneously considers the coupling effect among the attitude, orbit, and plate structure appendage vibrations of spacecraft in orbit. The vibration phenomenon of the plate structure appendage is approximated by a single degree of freedom torsion spring model. This description method can easily describe the vibration phenomenon through Lie group tools. On the other hand, the dynamic equations derived from the perspectives of Lagrange geometry and Hamilton geometry are global and coordinate free. In addition, the establishment of the system dynamics model considers the time-varying characteristics of the satellite center of mass, making it more accurate. The effectiveness of this modeling method is verified using numerical examples. Through simulation comparison with the rigid model, the attitude-orbit-structure coupling effect of the quasi-plate satellite under excitation is analyzed. Results show that the model has good stability and can accurately predict the dynamic response of the quasi flat satellite in orbit under excitation.

Cite this article

Qian CAO , Huayi LI . Fully-coupled dynamics for plate-type satellite based on geometric mechanics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 229786 -229786 . DOI: 10.7527/S1000-6893.2024.29786

References

1 LAURSEN L. No More “No Service”: Cellphones will increasingly text via satellite[J]. IEEE Spectrum202360(1): 52-55.
2 NEINAVAIE M, KHALIFE J, KASSAS Z M. Acquisition, Doppler tracking, and positioning with starlink LEO satellites: First results[J]. IEEE Transactions on Aerospace and Electronic Systems202258(3): 2606-2610.
3 ZHAO Z, WEN S R, LI F M. Vibration analysis of multi-span lattice sandwich beams using the assumed mode method[J]. Composite Structures2018185: 716-727.
4 MY C A, BIEN D X, LE C H, et al. An efficient finite element formulation of dynamics for a flexible robot with different type of joints[J]. Mechanism and Machine Theory2019134: 267-288.
5 WINGET J M, HUSTON R L. Cable dynamics—a finite segment approach[J]. Computers & Structures19766(6): 475-480.
6 GUPTA A, TALHA M. Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences201579: 1-14.
7 张秀云, 宗群, 窦立谦, 等. 柔性航天器振动主动抑制及姿态控制[J]. 航空学报201940(4): 322503.
  ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica201940(4): 322503 (in Chinese).
8 朱尊红, 戈新生. 单翼太阳帆板航天器非约束模态动力学建模及特性研究[J]. 振动与冲击202241(9): 99-106.
  ZHU Z H, GE X S. Unconstrained modal dynamic modeling and characteristics for a spacecraft with a single wing solar array[J]. Journal of Vibration and Shock202241(9): 99-106 (in Chinese).
9 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报201031(8): 1565-1571.
  CUI N G, LIU J F, RONG S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica201031(8): 1565-1571 (in Chinese).
10 ANGELETTI F. Control-oriented modelling of an integrated attitude and vibration suppression architecture for large space structures[D]. Rome: Sapienza University of Rome, 2020: 1-25.
11 NAZARI M, BUTCHER E A, YUCELEN T, et al. Decentralized consensus control of a rigid-body spacecraft formation with communication delay[J]. Journal of Guidance, Control, and Dynamics201639(4): 838-851.
12 WANG W, WU D, MENGALI G, et al. Asteroid hovering missions from a fuel-consumption viewpoint[J]. Journal of Guidance, Control, and Dynamics202043(7): 1374-1382.
13 MISRA G, SANYAL A K. Analysis of orbit-attitude coupling of spacecraft near small solar system bodies[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2015.
14 刘玉亮, 邬树楠, 张开明, 等. 重力姿轨耦合效应引起的太阳能电站轨道共振[J]. 航空学报201839(12): 222194.
  LIU Y L, WU S N, ZHANG K M, et al. Resonance in the orbital motion of solar power station due to gravitational orbit-attitude coupling[J]. Acta Aeronautica et Astronautica Sinica201839(12): 222194 (in Chinese).
15 SINCARSIN G B, HUGHES P C. Gravitational orbit-attitude coupling for very large spacecraft[J]. Celestial Mechanics198331(2): 143-161.
16 SCHAUB H, JUNKINS J L. Analytical mechanics of space systems [M]. Reston: AIAA, 2003.
17 ALLARD C, SCHAUB H, PIGGOTT S. General hinged rigid-body dynamics approximating first-order spacecraft solar panel flexing[J]. Journal of Spacecraft and Rockets201855(5): 1291-1299.
18 LEE T, LEOK M, MCCLAMROCH N H. Lie group variational integrators for the full body problem in orbital mechanics[J]. Celestial Mechanics and Dynamical Astronomy200798(2): 121-144.
19 梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报202142(11): 525089.
  MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525089 (in Chinese).
20 张洪珠, 叶东, 孙兆伟. 输入量化下航天器位姿一体化预设时间控制[J]. 航空学报202344(22): 328558.
  ZHANG H Z, YE D, SUN Z W. Predefined-time integrated pose control for spacecraft under input quantization[J]. Acta Aeronautica et Astronautica Sinica202344(22): 328558 (in Chinese).
21 刘明, 范睿超, 邱实, 等. 基于全驱系统理论的航天器姿轨预设性能控制[J]. 航空学报202445(1): 628318.
  LIU M, FAN R C, QIU S, et al. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach[J]. Acta Aeronautica et Astronautica Sinica202445(1): 628318 (in Chinese).
22 姜斌, 孟庆开, 杨浩. 航天器姿轨控制研究综述: 微分几何控制方法[J]. 控制与决策202338(8): 2079-2092.
  JIANG B, MENG Q K, YANG H. A survey on spacecraft attitude and orbit control: Differential geometric control approaches[J]. Control and Decision202338(8): 2079-2092 (in Chinese).
23 易中贵, 岳宝增, 刘峰, 等. 刚-液耦合航天器系统的Hamilton结构及稳定性分析[J]. 应用数学和力学202344(5): 499-512.
  YI Z G, YUE B Z, LIU F, et al. Hamiltonian structures and stability analysis for rigid-liquid coupled spacecraft systems[J]. Applied Mathematics and Mechanics202344(5): 499-512 (in Chinese).
24 YI Z G, YUE B Z. Study on the dynamics, relative equilibria, and stability for liquid-filled spacecraft with flexible appendage[J]. Acta Mechanica2022233(9): 3557-3578.
25 LEE T, LEVE F. Lagrangian mechanics and Lie group variational integrators for spacecraft with imbalanced reaction wheels[C]∥2014 American Control Conference. Piscataway: IEEE Press, 2014: 3122-3127.
26 LEE T, LEOK M, MCCLAMROCH N H. High-fidelity numerical simulation of complex dynamics of tethered spacecraft[J]. Acta Astronautica201499: 215-230.
27 ANGELETTI F, GASBARRI P, SABATINI M. Optimal design and robust analysis of a net of active devices for micro-vibration control of an on-orbit large space antenna[J]. Acta Astronautica2019164: 241-253.
28 LEE T. Computational geometric mechanics and control of rigid bodies[D]. Ann Arbor: University of Michigan, 2008: 12-14.
29 CURTIS H D. Orbital maneuvers[M]∥Orbital mechanics for engineering students. Amsterdam: Elsevier, 2021: 287-350.
30 IZADI M, SANYAL A K. Rigid body pose estimation based on the Lagrange-d’Alembert principle[J]. Automatica (Journal of IFAC)201671(C): 78-88.
Outlines

/