Reviews

Dual-mode scramjet: From performance optimization to mode-design

  • Jun CHEN ,
  • Hanchen BAI ,
  • Bing WAN ,
  • Qi LI
Expand
  • Science and Technology on Scramjet Laboratory,Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2023-10-27

  Revised date: 2023-11-14

  Accepted date: 2024-01-14

  Online published: 2024-02-23

Supported by

Defense Industrial Technology Development Program(STS/MY-ZY-2020-004)

Abstract

The flight of airline type space launchers involves a wide range of velocity and altitude with complicated mission profiles by phases. The Dual-Mode Scramjet (DMS) is required to have the capability of efficient operation in a designed profile with a large range of thrust levels, imposing a new challenge. A history overview with related knowledge and understanding of the DMS is provided in this paper, including its background and original intention, and progress in understanding its operation mechanism and performance optimization. The relationship between the thermal-dynamic cycle analysis and wide range performance optimization is discussed. Enlightened by the historical experience, we propose that the challenge could be overcome with systematic optimization to realize wide range mode-control operation with acceptable performance. Operational modes for wide range DMSs need to be designed according to a flight mission to establish a set of design-based wide-range-mode-controlling and controlled-mode-transition technology. As an example, based on conclusions from the equivalent thermal-dynamic process theory, a DMS mode-control concept and future investigation directions are proposed for wide range effective operation. In order to develop wide-range mode control and controllable mode transition technology, two main capabilities need to be developed in the future. One capability is to settle down the inlet/engine matching and the airframe/engine integration issues based on mission constraints quantitatively, and to build an “immediate-demand design” capability for airframe/engine integration. Another capability is to develop controllable combustion organization technology and build an “immediate-demand design” capability for combustion systems.

Cite this article

Jun CHEN , Hanchen BAI , Bing WAN , Qi LI . Dual-mode scramjet: From performance optimization to mode-design[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529781 -529781 . DOI: 10.7527/S1000-6893.2024.29781

References

1 CHASE R, TANG M. The quest for single stage earth-to-orbit: TAV, NASP, DC-X and X-33 accomplishments, deficiencies, and why they did not fly: AIAA-2002-5143[R]. Reston: AIAA, 2002.
2 TANG M. Hypersonic - a periodic quest: AIAA-2005-3258[R]. Reston: AIAA, 2005.
3 FUCHS R P, CHAPUT A J, FROST D E, et al. Why and whither hypersonic research in the US Air Force[R]. Washington, D.C.: NASA, 2000.
4 HAMM D, BEST D. Hypersonic design: AIAA-1992-5077[R]. Reston: AIAA, 1992.
5 WEBER R J. Propulsion for hypersonic transport aircraft[R]. Washington, D.C.: NASA, 1964.
6 WALL D E. A study of hypersonic aircraft[R]. Washington, D.C.: NASA, 1964.
7 MCCLINTON C R, ANDREWS E H, HUNT J L. Engine development for space access: Past, present and future[C]∥15th International Symposium on Air Breathing Engines. Reston: AIAA, 2001.
8 EDUCATIONAL NOTES RTO. High speed propulsion: Engine design - integration and thermal management[C]∥The AVT-185 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2010.
9 HUNT J L, GERARD L, WAGNER A. System challenges for hypersonic vehicles[R]. Washington, D.C.: NASA, 1997.
10 SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences201684: 1-28.
11 RICHMOND J. Optimizing trajectories for unpowered hypersonic waveriders during atmospheric reentry: AIAA-2022-2608[R]. Reston: AIAA, 2022.
12 LIVINGSTON J. The case against horizontal takeoff launch vehicles: AIAA-2008-2640[R]. Reston: AIAA, 2008.
13 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进201945(4): 9-15.
  ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion201945(4): 9-15 (in Chinese).
14 WEINGERTNER S. Sanger - the reference concept of the German hypersonic technology program: AIAA-00 93-5161[R]. Reston: AIAA, 1993.
15 FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power200420(1): 27-58.
16 DULEPOV N, LANSHIN A, SOKOLOVA O, et al. Propulsion systems for TSTO airplane-accelerators of different types: AIAA-2001-1914[R]. Reston: AIAA, 2001.
17 WILLIAM J D. A study of composite propulsion systems for advanced launch vehicle applications: 25194(Vol.1)[R]. California: Marquardt Corporation, 1966.
18 ERDOS J I, NUCCI L M. Pioneering scramjet developments by Antonio Ferri: N92-21519[R]. Washington, D.C.: NASA, 1992.
19 CURRAN E T, STULL F D. The utilization of supersonic combustion ramjet systems at low Mach number: RTD-TDR-63-4097[R]. Bolling AFB, DC: AFRL, 1964.
20 BOUCHEZ M. Structural design of dual-mode ramjets and associated system issues[C]∥The AVT-185 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2010.
21 SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences2019106: 43-70.
22 URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics201850: 593-627.
23 LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences2020119: 100636.
24 LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering2021190: 116754.
25 SULLINS G A. Demonstration of mode transition in a scramjet combustor[J]. Journal of Propulsion and Power19939(4): 515-520.
26 VOLAND R, ROCK K. NASP concept demonstration engine and subscale parametric engine tests: AIAA-1995-6055[R]. Reston: AIAA, 1995.
27 ANDREADIS D. Scramjet engines enabling the seamless integration of air & space operations[J]. The Industrial Physicist2004: 8~9.
28 YU D R, CUI T, BAO W. Catastrophe, hysteresis and bifurcation of mode transition in scramjet engines and its model[J]. Science in China Series E: Technological Sciences200952(6): 1543-1550.
29 BAO W, YANG Q C, CHANG J T, et al. Experimental study on dynamic characteristics of combustion mode transition: AIAA-2013-3973[R]. Reston: AIAA, 2013.
30 李飞, 王知溥, 余西龙, 等. 双模态发动机的模态鉴别方法[J]. 力学学报201547(3): 389-397.
  LI F, WANG Z P, YU X L, et al. Experimental study on judgment method of combustion mode on dual-mode scramjet[J]. Chinese Journal of Theoretical and Applied Mechanics201547(3): 389-397 (in Chinese).
31 肖保国, 李莉, 张顺平, 等. 超燃冲压发动机燃烧模态转换直连式实验研究[J]. 推进技术201940(2): 339-346.
  XIAO B G, LI L, ZHANG S P, et al. Direct-connect experimental investigation of combustion mode transition for scramjet engine[J]. Journal of Propulsion Technology201940(2): 339-346 (in Chinese).
32 连欢, 顾洪斌, 周芮旭, 等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学202135(1): 97-108.
  LIAN H, GU H B, ZHOU R X, et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics202135(1): 97-108 (in Chinese).
33 LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal201957(11): 4764-4777.
34 CURRAN D, WHEATLEY V, SMART M. Investigation of combustion mode control in a Mach 8 shape-transitioning scramjet[J]. AIAA Journal201957(7): 2977-2988.
35 HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994.
36 CURRAN E T. Scramjet engines: The first forty years[J]. Journal of Propulsion and Power200117(6): 1138-1148.
37 CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston: AIAA, 2001.
38 RAMUNNO M A, BOYD I M, GRANDHI R V, et al. Integrated hypersonic aeropropulsion model for multidisciplinary vehicle analysis and optimization[J]. Journal of Propulsion and Power202238(3): 478-488.
39 MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design, second edition[M]. Reston: AIAA, 2002.
40 郭楚微, 孙宗祥, 罗月培, 等. 美国“降阶” 发展高超声速飞机[J]. 空天技术2022(5): 89-96.
  GUO C W, SUN Z X, LUO Y P, et al. U.S. “Degraded” development of hypersonic aircraft[J]. Aerospace Technology2022(5): 89-96 (in Chinese).
41 陈晓清. 美军高超声速飞机组合动力技术进展分析[J]. 飞航导弹2021(5): 17-20, 25.
  CHEN X Q. Progress analysis of combined power technology of hypersonic aircraft in US military[J]. Aerodynamic Missile Journal2021(5): 17-20, 25 (in Chinese).
42 SEGAL C. Propulsion systems for hypersonic flight[C]∥The AVT-116 RTO AVT/VKI Lecture Series. Genèse: RTO/NATO, 2004.
43 МАКСИМОВ А И. Восхождение к Звездам:Краткая История Развития Ракетной и Космонавтики[M]. Новосибирск: Издательство СО РАН, 2012.
44 СТЕЧКИН Б С. Теория воздушного реакдивного двигателя[J]. Техника воздушного флона1929(2): 7-16.
45 POBEDONOSTSEV Y A. The first flight tests of ramjet engines: AD-732275 (FTD-RC-23-735-71) [R]. Ohio: Wright-Patterson AFB, 1971.
46 WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power200218(1): 14-27.
47 蓬达留克, 伊里雅申柯. 冲压式喷气发动机[M]. 宁榥, 张斌全, 译. 北京: 国防工业出版社, 1958.
  БОНДАРЮК М М, ИЛЬЯЩЕНКО С М. Ramjet Engine[M]. NING H, ZHANG B Q, translated. Beijing: National Defense Industry Press, 1958 (in Chinese).
48 OSWATITSCH K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers)[R]. Washington, D.C.: NACA, 1980.
49 ROY M. Thermodynamique des systemees propulsifs a reaction[M]. Paris: Dunod Editeur, 1947.
50 WEBER R J, MACKAY J S. An analysis of ramjet engines using supersonic combustion[R]. Washington, D.C.: NACA, 1958.
51 SWITHENBANK J. Hypersonic air-breathing propulsion[J]. Progress in Aerospace Sciences19678: 229-294.
52 FERRI A. Future research in air breathing engines[C]∥Fourth AGARD Colloquium. Milan: Pergamon Press, 1961.
53 DUGGER G L. Comparison of hypersonic ramjet engines with subsonic and supersonic combustion[C]∥Fourth AGARD Colloquium. Milan: Pergamon Press, 1961.
54 BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power19939(4): 499-514.
55 ROY P M. Propulsion supersonique par turboréacteurs et par statoréacteurs[M]∥Advances in Aeronautical Sciences. Amsterdam: Elsevier, 1959.
56 FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft19685(1): 3-10.
57 MERLIN P. Design and development of the blackbird: Challenges and lessons learned: AIAA-2009-1522[R]. Reston: AIAA, 2009.
58 FALEMPIN F H. Scramjet development in France[M]. CURRAN E T, MURTHY S N B. Scramjet Propulsion. Reston: AIAA, 2001.
59 BILLIG F S, ORTH R C, LASKY M. Effects of thermal compression on the performance estimates of hypersonic ramjets[J]. Journal of Spacecraft and Rockets19685(9): 1076-1081.
60 Advanced Engine and Technology Department of GE. Technical proposal for conceptual and preliminary design of a hypersonic ramjet research engine(Vol.1):NASA-CR-146992[R]. Washington, D.C.: NASA, 1965.
61 BILLIG F S, WALTRUP P J, STOCKBRIDGE R D. Integral-rocket dual-combustion ramjets: A new propulsion concept[J]. Journal of Spacecraft and Rockets198017(5): 416-424.
62 BILLIG F. SCRAM - A supersonic combustion ramjet missile: AIAA-1993-2329[R]. Reston: AIAA, 1993.
63 WALTRUP P J. Hypersonic air-breathing missile propulsion[C]∥AGARD Symposium. London: Technical Editing and Reproduction Ltd, 1997.
64 BILLIG F S, DUGGER G L. The interaction of shock waves and heat addition in the design of supersonic combustors[J]. Symposium (International) on Combustion196912(1): 1125-1139.
65 WALTRUP P, BILLIG F. Precombustion shock structure in scramjet engines: AIAA-1972-1181[R]. Reston: AIAA, 1972.
66 BILLIG F S, DUGGER G L, WALTRUP P J. Inlet-combustor interface problems in scramjet engines[C]∥The First International Symposium on Air Breathing Propulsion. Reston: AIAA, 1972.
67 WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal197311(10): 1404-1408.
68 WALTRUP P J, BILLIG F S. Prediction of precombustion wall pressure distributions in scramjet engines[J]. Journal of Spacecraft and Rockets197310(9): 620-622.
69 WALTRUP P J, BILLIG F S, STOCKBRIDGE R D. A procedure for optimizing the design of scramjet engines[J]. Journal of Spacecraft and Rockets197916(3): 163-171.
70 WALTRUP P J, BILLIG F S, EVANS M C. Critical considerations in the design of supersonic combustion ramjet/scramjet/engines[J]. Journal of Spacecraft and Rockets198118(4): 350-356.
71 MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences199935(1): 33-100.
72 GRUBER M, SMITH S, MATHUR T. Experimental characterization of hydrocarbon-fueled, axisymmetric, scramjet combustor flowpaths: AIAA-2011-2311[R]. Reston: AIAA, 2011.
73 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术201839(10): 2252-2273.
  HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology201839(10): 2252-2273 (in Chinese).
74 CROCCO L. One-dimensional treatment of steady gas dynamics[M]. Princeton: Princeton University Press, 1958.
75 IKUI T, MATSUO K, NAGAI M. The mechanism of pseudo-shock waves[J]. Bulletin of JSME197417(108): 731-739.
76 IKUI T, MATSUO K, SASAGUCHI K. Modified diffusion model of pseudo-shock waves considering upstream boundary layers[J]. JSME International Journal Series B198124: 1920-1927.
77 陈军. Ma4~7双模态冲压发动机燃烧室热力工作过程与性能潜力研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016.
  CHEN J. The relationship between thermal process and potential performance in dual-mode scramjet at Ma4-7[D]. Mianyang: China Aerodynamics Research and Development Center, 2016 (in Chinese).
78 BUILDER C. On the thermodynamic spectrum of airbreathing propulsion: AIAA-1964-0243[R]. Reston: AIAA, 1964.
79 SULLINS G A, WALTRUP P J. A comparison of scramjet integral analysis techniques[J]. Journal of Propulsion and Power19851(2): 156-158.
80 朱也夫B С, 马卡伦В С. 冲压和火箭冲压发动机原理[M]. 刘兴洲, 译. 北京: 国防工业出版社, 1975.
  ЗУЕВ В С, МАКАРОН В С. Теория примоточных и ракетно-прямоточных двигателей[M]. LIU X Z, translated. Beijing: National Defense Industry Press, 1975 (in Chinese).
81 ROBERTS K, WILSON D. Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00: AIAA-2009-1255[R]. Reston: AIAA, 2009.
82 BILLIG F S. Combustion processes in supersonic flow[J]. Journal of Propulsion and Power19884(3): 209-216.
83 WALTRUP P J. Liquid-fueled supersonic combustion ramjets: A research perspective[J]. Journal of Propulsion and Power19873(6): 515-524.
84 BILLIG F S, SULLINS G A. Optimization of combustor-isolator in dual-mode ram scramjets: AIAA-1993-5154[R]. Reston: AIAA, 1993.
85 何国强, 秦飞. 火箭基组合循环发动机[M]. 北京: 国防工业出版社, 2019.
  HE G Q, QIN F. Rocket based combined cycle[M]. Beijing: National Defense Industry Press, 2019 (in Chinese).
86 HUNT J L, MCCHTON C R. Scramjet engine/airframe integration methodology[C]∥AGARD Conference. London: Technical Editing and Reproduction Ltd, 1997.
87 FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power201329(1): 261-273.
88 KANDA T, CHINZEI N, KUDO K, et al. Dual-mode operation in a scramjet combustor: AIAA-2001-1816[R]. Reston: AIAA, 2001.
89 王振锋, 白菡尘, 刘初平. 燃烧效率一维评价的影响因素研究[J]. 实验流体力学200822(1): 11-16.
  WANG Z F, BAI H C, LIU C P. A study of the influence of several factors on one-dimensional method for ramcombustor combustion efficiency estimation[J]. Journal of Experiments in Fluid Mechanics200822(1): 11-16 (in Chinese).
90 白菡尘, 陈军. 双模态冲压发动机等效热力过程与性能关系原理[M]. 北京: 国防工业出版社, 2018.
  BAI H C, CHEN J. Connection principle between dual-mode scramjet performance and equivalent thermal-dynamic process[M]. Beijing: National Defense Industry Press, 2018 (in Chinese).
91 朱克罗, 霍夫曼. 气体动力学[M]. 王汝涌, 吴宗真, 吴宗善, 等,译. 北京: 国防工业出版社, 1984.
  ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. WANG R Y, WU Z Z, WU Z S, et al, translated. Beijing: National Defense Industry Press, 1984 (in Chinese).
92 FAULKNER R F. Integrated system test of an air-breathing rocket (ISTAR): AIAA-2001-1812[R]. Reston: AIAA, 2001.
93 DEBONIS J, TREFNY C, STEFFEN C. Inlet development for a rocket based combined cycle, single stage to orbit vehicle using computational fluid dynamics: AIAA-1999-2239[R]. Reston: AIAA, 1999.
94 万冰, 陈军, 白菡尘, 等 .基于等效热力过程的宽域冲压全流道性能设计方法[J]. 航空学报202445(4): 157-170.
  WAN B, CHEN J, BAI H C, et al. Full flow path performance design method for wide range scramjet based on equivalent thermodynamic process [J]. Acta Aeronautica et Astronautica Sinica202445(4): 157-170 (in Chinese).
95 THOMAS S R, PALAC D T, TREFNY C J, et al. Performance evaluation of the NASA GTX RBCC flowpath[C]∥15th International Symposium on Air Breathing Engines. Reston: AIAA, 2001.
96 陈军, 白菡尘, 万冰. 基于热力循环分析的双模态冲压发动机进发匹配探讨[C]∥第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会, 2022.
  CHEN J, BAI H C, WAN B. Disscussion on inlet and engine matching of dual-mode ramjet engine based on the thermodynamic cycle analysing[C]∥6th China Joint Conference on Aerospace Propulsion, 2022 (in Chinese).
97 黎崎. 二元高超进气道入口段设计参数与气动喉道特征关系研究[D]. 绵阳: 中国空气动力研究与发展中心, 2017.
  LI Q. Effect of entrance section design parameters on aero-throat in a 2D hypersonic inlet[D]. Mianyang: China Aerodynamics Research and Development Center, 2017 (in Chinese).
Outlines

/