ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Key technologies of bird inspired flapping-wing micro aerial vehicles: Review
Received date: 2023-12-15
Revised date: 2024-01-24
Accepted date: 2024-01-30
Online published: 2024-02-07
Supported by
National Natural Science Foundation of China(12272318);ND Basic Research Funds(G2022WD)
Bird Inspired Flapping-wing Micro Aerial Vehicles (BIFMAVs) have great development potential in terms of flight efficiency, stealth, and maneuverability, exhibiting high research value and application prospects. This article mainly reviews the research and development progress of BIFMAVs over the past 20 years, summarizing and analyzing the current state of research on their overall design methods, aerodynamic analysis methods, and key technologies of the driven system and the flight dynamics and control. The characteristics and developmental trends of, and the challenges faced by each technology are presented, and the prospects for the future development direction of BIFMAVs are ultimately proposed. By providing a comprehensive review of the current state of research and development direction of key technologies for BIFMAVs, it can serve as a reference for subsequent researchers working in this field.
Dong XUE , Ziwen ZHU , Bifeng SONG . Key technologies of bird inspired flapping-wing micro aerial vehicles: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 529984 -529984 . DOI: 10.7527/S1000-6893.2024.29984
1 | SHYY W, AONO H, KANG C K, et al. An introduction to flapping wing aerodynamics[M]. New York: Cambridge University Press, 2013. |
2 | SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327. |
3 | BAYIZ Y, GHANAATPISHE M, FATHY H, et al. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization[J]. Bioinspiration & Biomimetics, 2018, 13(4): 046002. |
4 | GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Robo Raven: A flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft Robotics, 2014, 1(4): 275-288. |
5 | SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]∥Proceedings of the 28th International Congress of the Aeronautical Sciences. Brisbane: The International Council of the Aeronautical Sciences, 2012: 1148-1157. |
6 | 郑祥明. 微型飞行器非线性飞行动力学与智能控制研究[D]. 南京: 南京航空航天大学, 2008. |
ZHENG X M. Research on nonlinear flight dynamics and intelligent flight control of micro air vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). | |
7 | YANG W Q, SONG B F, SONG W P, et al. The effects of span-wise and chord-wise flexibility on the aerodynamic performance of micro flapping-wing[J]. Chinese Science Bulletin, 2012, 57(22): 2887-2897. |
8 | YANG W Q, WANG L G, SONG B F. Dove: A biomimetic flapping-wing micro air vehicle[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84. |
9 | 姜洪利. 两段式扑翼飞行器结构设计与仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
JIANG H L. Structural design and simulation analysis of a two-section flapping wing air vehicle[D].Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
10 | 张兵. 大型仿生扑翼飞行器飞行控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
ZHANG B. The method of the flight control of large bionic flapping wing air craft[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
11 | 袁杰. 微型扑翼柔性翅翼变形及其气动力特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
YUAN J. Experimental study on flexible wings deformation and aerodynamic characteristics of micro flapping wings[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
12 | PAN E Z, XU H, YUAN H, et al. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters[J]. Biomimetic Intelligence and Robotics, 2021, 1: 100002. |
13 | XU W F, PAN E Z, LIU J T, et al. Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment[J]. Chinese Journal of Aeronautics, 2022, 35(2): 235-249. |
14 | 贺威, 刘上平, 黄海丰, 等. 独立驱动的仿鸟扑翼飞行机器人的系统设计与实验[J]. 控制理论与应用, 2022, 39(1): 12-22. |
HE W, LIU S P, HUANG H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot[J]. Control Theory and Technology, 2022, 39(1): 12-22 (in Chinese). | |
15 | FU Q, WANG X Q, ZOU Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles[J]. Guidance, Navigation and Control, 2022, 2(1): 2250001. |
16 | HUANG H F, HE W, WANG J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5484-5494. |
17 | ZUFFEREY R, TORMO-BARBERO J, GUZMáN M M, et al. Design of the high-payload flapping wing robot E-Flap[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3097-3104. |
18 | 中国日报陕西记者站. 3小时5分30 秒!西工大仿生飞行器再破自己创造的世界纪录![EB/OL]. (2023-10-06) [2023-12-01]. . |
China Daily Shaanxi Reporter Station. 3 hours, 5 minutes, and 30 seconds! Northwestern Polytechnical University’s biomimetic aircraft breaks its own world record once again![EB/OL]. (2023-10-06) [2023-12-01]. (in Chinese). | |
19 | 昂海松. 微型飞行器的设计原则和策略[J]. 航空学报, 2016, 37(1): 69-80. |
ANG H S. Design principles and strategies of micro air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 69-80 (in Chinese). | |
20 | SHYY W, BERG M, LJUNGQVIST D. Flapping and flexible wings for biological and micro air vehicles[J]. Progress in Aerospace Sciences, 1999, 35(5): 455-505. |
21 | GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of Mechanisms and Robotics, 2012, 4(2): 21003. |
22 | 王利光. 微型扑翼飞行器系统设计与原理样机研究[D]. 西安: 西北工业大学, 2013. |
WANG L G. Research on the system design and development approach for biomimetic flapping-wing micro air vehicle[D]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese). | |
23 | CHIN D D, LENTINK D. Flapping wing aerodynamics: From insects to vertebrates[J]. Journal of Experimental Biology, 2016, 219(7): 920-932. |
24 | 薛栋, 宋笔锋, 宋文萍, 等. 仿鸟型扑翼飞行器气动/结构/飞行力学耦合研究进展[J]. 空气动力学学报, 2018, 36(1): 88-97. |
XUE D, SONG B F, SONG W P, et al. Advances in coupling aeroelasticity and flight dynamics of bird inspired FMAV[J]. Acta Aerodynamica Sinica, 2018, 36(1): 88-97 (in Chinese). | |
25 | GREENEWALT C H. Dimensional relationships for flying animals[J]. Miscellaneous Publications, 1962, 144: 1-46. |
26 | TAYLOR G K, NUDDS R L, THOMAS A L R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency[J]. Nature, 2003, 425: 707-711. |
27 | LENTINK D, DICKINSON M H. Rotational accelerations stabilize leading edge vortices on revolving fly wings[J]. Journal of Experimental Biology, 2009, 212(16): 2705-2719. |
28 | LEHMANN F O. The mechanisms of lift enhancement in insect flight[J]. Naturwissenschaften, 2004, 91(3): 101-122. |
29 | SANE S P. The aerodynamics of insect flight[J]. Journal of Experimental Biology, 2003, 206(23): 4191-4208. |
30 | SANE S P, DICKINSON M H. The control of flight force by a flapping wing: Lift and drag production[J]. Journal of Experimental Biology, 2001, 204(15): 2607-2626. |
31 | ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384: 626-630. |
32 | DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960. |
33 | KRUYT J W, VAN HEIJST G F, ALTSHULER D L, et al. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio[J]. Journal of the Royal Society, Interface, 2015, 12(105): 20150051. |
34 | LEHMANN F O M. The control of wing kinematics and flight forces in fruit flies (Drosophila spp.)[J]. Journal of Experimental Biology, 1998, 201(3): 385-401. |
35 | SUN M, TANG J. Lift and power requirements of hovering flight in Drosophila virilis[J]. Journal of Experimental Biology, 2002, 205(16): 2413-2427. |
36 | WILLMOTT A, ELLINGTON C, THOMAS A. Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, manduca sexta[J]. Philosophical Transactions of the Royal Society B, 1997, 352: 303-316. |
37 | LIU H, ELLINGTON C, KAWACHI K, et al. A computational fluid dynamic study of hawkmoth hovering[J]. Journal of Experimental Biology, 1998, 201(4): 461-477. |
38 | WANG J K, SUN M. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight[J]. Journal of Experimental Biology, 2005, 208(19): 3785-3804. |
39 | BOMPHREY R J, TAYLOR G K, THOMAS A L R. Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair[J]. Experiments in Fluids, 2009, 46(5): 811-821. |
40 | SHYY W. Aerodynamics of low Reynolds number flyers[M]. Cambridge: Cambridge University Press, 2008. |
41 | PENNYCUICK C J. Animal flight[M]. London: Edward Arnold (Publishers) Limited, 1972. |
42 | NORBERG U M. Vertebrate flight[M]. Berlin, Heidelberg: Springer Verlag, 1990. |
43 | SPEDDING G R, ROSéN M, HEDENSTR?M A. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds[J]. Journal of Experimental Biology, 2003, 206(14): 2313-2344. |
44 | HEDENSTR?M A, ROSéN M, SPEDDING G R. Vortex wakes generated by Robins Erithacus rubecula during free flight in a wind tunnel[J]. Journal of the Royal Society, Interface, 2006, 3(7): 263-276. |
45 | HENNINGSSON P, SPEDDING G R, HEDENSTR?M A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel[J]. Journal of Experimental Biology, 2008, 211: 717-730. |
46 | HENNINGSSON P, MUIJRES F T, HEDENSTR?M A. Time-resolved vortex wake of a common swift flying over a range of flight speeds[J]. Journal of the Royal Society, Interface, 2011, 8(59): 807-816. |
47 | JOHANSSON L C, HEDENSTR?M A. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV)[J]. Journal of Experimental Biology, 2009, 212: 3365-3376. |
48 | MUIJRES F T, JOHANSSON L C, HEDENSTR?M A. Leading edge vortex in a slow-flying passerine[J]. Biology Letters, 2012, 8(4): 554-557. |
49 | MUIJRES F T, BOWLIN M S, JOHANSSON L C, et al. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers[J]. Journal of the Royal Society, Interface, 2012, 9(67): 292-303. |
50 | VIDELER J J, STAMHUIS E J, POVEL G D E. Leading-edge vortex lifts swifts[J]. Science, 2004, 306(5703): 1960-1962. |
51 | WARRICK D R, TOBALSKE B W, POWERS D R. Aerodynamics of the hovering hummingbird[J]. Nature, 2005, 435: 1094-1097. |
52 | HEDENSTR?M A, MUIJRES F T, VON BUSSE R, et al. High-speed stereo DPIV measurement of wakes of two bat species flying freely in a wind tunnel[J]. Experiments in Fluids, 2009, 46(5): 923-932. |
53 | MUIR R E, ARREDONDO-GALEANA A, VIOLA I M. The leading-edge vortex of swift wing-shaped delta wings[J]. Royal Society Open Science, 2017, 4(8): 170077. |
54 | HUBEL T Y, RISKIN D K, SWARTZ S M, et al. Wake structure and wing kinematics: The flight of the lesser dog-faced fruit bat, Cynopterus brachyotis[J]. Journal of Experimental Biology, 2010, 213(20): 3427-3440. |
55 | 宋笔锋, 稂鑫雨, 薛栋, 等. 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学: 技术科学, 2022, 52(6): 893-910. |
SONG B F, LANG X Y, XUE D, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia Sinica (Technologica), 2022, 52(6): 893-910 (in Chinese). | |
56 | LEE Y J, LUA K B, LIM T T, et al. A quasi-steady aerodynamic model for flapping flight with improved adaptability[J]. Bioinspiration & Biomimetics, 2016, 11(3): 036005. |
57 | ANSARI S A, ?BIKOWSKI R, KNOWLES K. Aerodynamic modelling of insect-like flapping flight for micro air vehicles[J]. Progress in Aerospace Sciences, 2006, 42(2): 129-172. |
58 | BERMAN G J, WANG Z J. Energy-minimizing kinematics in hovering insect flight[J]. Journal of Fluid Mechanics, 2007, 582: 153. |
59 | ANDERSEN A, PESAVENTO U, WANG Z J. Unsteady aerodynamics of fluttering and tumbling plates[J]. Journal of Fluid Mechanics, 2005, 541: 65-90. |
60 | DICKSON W B, STRAW A D, DICKINSON M H. Integrative model of drosophila flight[J]. AIAA Journal, 2008, 46(9): 2150-2164. |
61 | KHAN Z A, AGRAWAL S K. Optimal hovering kinematics of flapping wings for micro air vehicles[J]. AIAA Journal, 2011, 49(2): 257-268. |
62 | RANKINE W J. On the mechanical principles of the action of propellers[J]. Transactions of the Institution of Naval Architects, 1865, 6: 13-39. |
63 | FROUDE R E. On the part played in propulsion by differences of fluid pressure[J]. Transactions of the Institution of Naval Architects, 1889, 30: 390-409. |
64 | ELLINGTON C. The aerodynamics of hovering insect flight. V. A vortex theory[J]. Philosophical Transactions of the Royal Society B, 1984, 305: 115-144. |
65 | WILLMOT A P, ELLINGTON C P. The mechanics of flight in the hawkmoth Manduca sexta II: Aerodynamic consequences of kinematic and morphological variation[J]. The Journal of Experimental Biology, 1997, 200(21): 2723–2745. |
66 | SUNADA S, ELLINGTON C P. A new method for explaining the generation of aerodynamic forces in flapping flight[J]. Mathematical Methods in the Applied Sciences, 2001, 24(17-18): 1377-1386. |
67 | MUIJRES F T, SPEDDING G R, WINTER Y, et al. Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements[J]. Experiments in Fluids, 2011, 51(2): 511-525. |
68 | SUN X H, ZHAO L F, JIAO Z X. Analyses and simulations of propulsion mechanisms for flapping wings with the extension of undulate propulsion theory[C]∥2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway: IEEE Press, 2016: 1794-1799. |
69 | MUIJRES F T, JOHANSSON L C, BARFIELD R, et al. Leading-edge vortex improves lift in slow-flying bats[J]. Science, 2008, 319(5867): 1250-1253. |
70 | MINOTTI F O. Determination of the instantaneous forces on flapping wings from a localized fluid velocity field[J]. Physics of Fluids, 2011, 23(11): 111902. |
71 | BOMPHREY R J. Advances in animal flight aerodynamics through flow measurement[J]. Evolutionary Biology, 2012, 39(1): 1-11. |
72 | WANG S Z, ZHANG X, HE G W, et al. On applicability of the Kutta-Joukowski theorem to low-Reynolds-number unsteady flows[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
73 | AHMADI A R, WIDNALL S E. Unsteady lifting-line theory with applications[C]∥AIAA Aerospace Sciences Meeting. Reston: AIAA, 1982: 11-14. |
74 | ARCHER R D, SAPUPPO J, BETTERIDGE D S. Propulsion characteristics of flapping wings[J]. The Aeronautical Journal, 1979, 83(825): 355-371. |
75 | BETTERIDGE D S, ARCHER R D. A study of the mechanics of flapping wings[J]. Aeronautical Quarterly, 1974, 25(2): 129-142. |
76 | PHLIPS P J, EAST R A, PRATT N H. An unsteady lifting line theory of flapping wings with application to the forward flight of birds[J]. Journal of Fluid Mechanics, 1981, 112(-1): 97. |
77 | SMITH M, WILKIN P, WILLIAMS M. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings[J]. Journal of Experimental Biology, 1996, 199(5):1073-1083. |
78 | NGUYEN A T, HAN J. Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle[J]. Aerospace Science and Technologys, 2018, 79: 468-481. |
79 | LONG L N, FRITZ T E. Object-oriented unsteady vortex lattice method for flapping flight[J]. Journal of Aircraft, 2004, 41(6): 1275-1290. |
80 | STANFORD B, BERAN P. Analytical sensitivity analysis of an unsteady vortex lattice method for flapping wing optimization[J]. Journal of Aircraft, 2010, 47(2): 647-662. |
81 | GHOMMEM M, COLLIER N, NIEMI A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1): 274-292. |
82 | GHOMMEM M, HAJJ M R, MOOK D T, et al. Global optimization of actively morphing flapping wings[J]. Journal of Fluids and Structures, 2012, 33: 210-228. |
83 | SVANBERG K. The method of moving asymptotes—A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. |
84 | SVANBERG K. A class of globally convergent optimization methods based on conservative convex separable approximations[J]. SIAM Journal on Optimization, 2002, 12(2): 555-573. |
85 | TAHA H E, HAJJ M R, NAYFEH A H. Flight dynamics and control of flapping-wing MAVs: A review[J]. Nonlinear Dynamics, 2012, 70(2): 907-939. |
86 | THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter[M]. 1935. |
87 | PETERS D A. Two-dimensional incompressible unsteady airfoil theory—An overview[J]. Journal of Fluids and Structures, 2008, 24(3): 295-312. |
88 | PETERS D A, JOHNSON M J. Finite-state airloads for deformable airfoils on fixed and rotating wings[C]∥ASME Winter Annual Meeting, Aeroelasticity and Fluid/Structures Interaction Problems. New York: ASME International, 1994: 44. |
89 | PETERS D A, KARUNAMOORTHY S, CAO W. Finite state induced flow models. I—Two-dimensional thin airfoil[J]. Journal of Aircraft, 1995, 32(2): 313-322. |
90 | JONES R T. Operational treatment of the nonuniform-lift theory in airplane dynamics: NACA 667[R]. Washington, D.C.: NACA, 1938. |
91 | JONES R T. The unsteady lift of a finite wing: NACA 682[R]. Washington, D.C.: NACA, 1939. |
92 | JONES R T. The unsteady lift of a wing of finite aspect ratio: NACA 681[R]. Washington, D.C.: NACA, 1940. |
93 | REISSNER E. Effect of finite span on the airload distributions for oscillating wings I: Aerodynamic theory of oscillating wings of finite span: NACA 1194[R]. Washington, D.C.: NACA, 1947. |
94 | REISSNER E, STEVENS J E. Effect of finite span on the airload distributions for oscillating wings. Ⅱ—Methods of calculation and examples of application: NACA 1195[R]. Washington, D.C.: NACA, 1947. |
95 | DICKINSON M H, G?TZ K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers[J]. Journal of Experimental Biology, 1993, 174(1): 45-64. |
96 | DICKSON W B, DICKINSON M H. The effect of advance ratio on the aerodynamics of revolving wings[J]. Journal of Experimental Biology, 2004, 207(24): 4269-4281. |
97 | SANE S P, DICKINSON M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J]. Journal of Experimental Biology, 2002, 205(8): 1087-1096. |
98 | ANDERSEN A, PESAVENTO U, WANG Z J. Analysis of transitions between fluttering, tumbling and steady descent of falling cards[J]. Journal of Fluid Mechanics, 2005, 541: 91-104. |
99 | PESAVENTO U, WANG Z J. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation[J]. Physical Review Letters, 2004, 93(14): 144501. |
100 | HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal, 2007, 45(5): 1066-1079. |
101 | 付强, 张祥, 赵民, 等. 仿生扑翼飞行器风洞实验研究进展[J]. 工程科学学报, 2022, 44(4): 767-779. |
FU Q, ZHANG X, ZHAO M, et al. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle[J]. Chinese Journal of Engineering, 2022, 44(4): 767-779 (in Chinese). | |
102 | MAYBURY W J, LEHMANN F O. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings[J]. Journal of Experimental Biology, 2004, 207(26): 4707-4726. |
103 | WU P, IFJU P, STANFORD B, et al. A multidisciplinary experimental study of flapping wing aeroelasticity in thrust production[C]∥The Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009. |
104 | WU P, IFJU P. Experimental methodology for flapping wing structure optimization in hovering flight of micro air vehicles[C]∥The Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
105 | CHAUDHURI A, HAFTKA R T, IFJU P, et al. Experimental flapping wing optimization and uncertainty quantification using limited samples[J]. Structural and Multidisciplinary Optimization, 2015, 51(4): 957-970. |
106 | KATZMAYR R. Effect of periodic changes of angle of attack on behavior of airfoils[M]. Washington, D.C.: National Advisory Committee for Aeronautics, 1922. |
107 | KNOLLER R. Die gesetze des luftwider standes[J]. Flug und Motortechnik (Wien), 1909, 3(21): 1-7. |
KNOLLER R. The laws of air resistance[J]. Flight and Engine Technology (Vienna), 1909, 3(21): 1-7 (in German). | |
108 | VON KARMAN T, BURGERS J M. Aerodynamic theory[M]. Berlin: Springer, 1934. |
109 | BRATT J B. Flow patterns in the wake of an oscillating airfoil: R&M-2773[R]. London: Aeronautical Research Council R&M, 1953. |
110 | 邵立民, 宋笔锋, 熊超, 等. 微型扑翼飞行器风洞试验初步研究[J]. 航空学报, 2007, 28(2): 275-280. |
SHAO L M, SONG B F, XIONG C, et al. Experimental investigation of flapping-wing MAV in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 275-280 (in Chinese). | |
111 | ANG H S, ZENG R, DUAN W B, et al. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV[J]. Journal of Aerospace Power, 2007, 22(11): 1838-1845. |
112 | 王利光. 微型扑翼飞行器动力系统设计与优化[D]. 西安: 西北工业大学, 2008. |
WANG L G. Design and optimization for the propulsion system of the flapping wing micro air vehicle[D]. Xi’an: Northwestern Polytechnical University, 2008 (in Chinese). | |
113 | WANG L G, SONG B F, YANG W Q, et al. Experimental characterization of a flexible membrane flapping-wing in forward flight[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
114 | YANG W Q, SONG B F, SONG W P, et al. Aerodynamic research of flexible flapping wing by combining DIC and CFD approaches[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
115 | FU P, SONG B F, WANG L G. An experimental study on the influence of passive deformation to lift and thrust generation in flexible flapping wing[C]∥The Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences, 2014. |
116 | 吴涛. 仿鸟扑翼多自由度运动的气动机理及气动优化设计[D]. 西安: 西北工业大学, 2022. |
Wu T. Aerodynamic mechanism and aerodynamic design optimization of bird-like flapping wing with multi-degree-of-freedom flapping motion[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
117 | VEST M S, KATZ J. Unsteady aerodynamic model of flapping wings[J]. AIAA Journal, 1996, 34(7): 1435-1440. |
118 | ZHU Q. Numerical simulation of a flapping foil with chordwise or spanwise flexibility[J]. AIAA Journal, 2007, 45(10): 2448-2457. |
119 | KIM D K, LEE J S, LEE J Y, et al. An aeroelastic analysis of a flexible flapping wing using modified strip theory[C]∥The Proceedings of Active and Passive Smart Structures and Integrated Systems. Bellingham: SPIE, 2008: 6928. |
120 | UNGER R, HAUPT M C, HORST P, et al. Structural design and aeroelastic analysis of an oscillating airfoil for flapping wing propulsion[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
121 | BROERING T M, LIAN Y, HENSHAW W. Numerical investigation of energy extraction in a tandem flapping wing configuration[J]. AIAA Journal, 2012, 50(11): 2295-2307. |
122 | WANG L, TIAN F B. Numerical study of flexible flapping wings with an immersed boundary method: Fluid-structure-acoustics interaction[J]. Journal of Fluids and Structures, 2019, 90: 396-409. |
123 | 曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析[J]. 南京航空航天大学学报, 2003, 35(1): 6-12. |
ZENG R, ANG H S. Aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 6-12 (in Chinese). | |
124 | 曾锐, 昂海松, 梅源, 等. 扑翼柔性及其对气动特性的影响[J]. 计算力学学报, 2005, 22(6): 750-754. |
ZENG R, ANG H S, MEI Y, et al. Flexibility of flapping wing and its effect on aerodynamic characteristic[J]. Chinese Journal of Computational Mechanics, 2005, 22(6): 750-754 (in Chinese). | |
125 | DENG S H, PERCIN M, VAN OUDHEUSDEN B W, et al. Numerical simulation of a flexible X-wing flapping-wing micro air vehicle[J]. AIAA Journal, 2017, 55(7): 2295-2306. |
126 | 龚凯. 有限翼展扑动翼的欧拉方程数值模拟[D]. 西安: 西北工业大学, 2003. |
GONG K. Numerical simulation of finite span flapping wing by euler equations[D]. Xi’an: Northwestern Polytechnical University, 2003 (in Chinese). | |
127 | 杨淑利, 宋文萍, 宋笔锋, 等. 微型扑翼飞行器机翼气动特性研究[J]. 西北工业大学学报, 2006, 24(6): 768-773. |
YANG S L, SONG W P, SONG B F, et al. Achieving reliability and validity of predicted aerodynamic performance of flapping wings for micro air vehicle (MAV)[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 768-773 (in Chinese). | |
128 | 何飞. 微型飞行器柔性翼气动及抗风特性研究[D]. 西安: 西北工业大学, 2007. |
HE F. Aerodynamics and anti-gust research of flexible-wing MAV[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese). | |
129 | 谢辉, 宋文萍, 宋笔锋. 微型扑翼绕流的N-S方程数值模拟[J]. 西北工业大学学报, 2008, 26(1): 104-109. |
XIE H, SONG W P, SONG B F. Numerical solution of Navier-Stokes equations for flow over a flapping wing[J]. Journal of Northwestern Polytechnical University, 2008, 26(1): 104-109 (in Chinese). | |
130 | 杨文青, 宋笔锋, 宋文萍. N-S方程数值研究翼型对微型扑翼气动特性的影响[J]. 计算力学学报, 2011, 28(2): 214-220. |
YANG W Q, SONG B F, SONG W P. The effect of airfoil to aerodynamics characteristics of flapping wing by numerical simulation on Navier-Stokes equations[J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 214-220 (in Chinese). | |
131 | 杨文青, 宋笔锋, 宋文萍, 等. 微型扑翼低雷诺数绕流气动特性研究[J]. 空气动力学学报, 2011, 29(1): 32-38. |
YANG W Q, SONG B F, SONG W P, et al. Aerodynamic performance research of micro flapping-wing in low Reynolds number flow[J]. Acta Aerodynamica Sinica, 2011, 29(1): 32-38 (in Chinese). | |
132 | 杨文青, 宋笔锋, 宋文萍. 高效确定重叠网格对应关系的距离减缩法及其应用[J]. 航空学报, 2009, 30(2): 205-212. |
YANG W Q, SONG B F, SONG W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212 (in Chinese). | |
133 | 陈利丽. 微型扑翼气动结构耦合计算及优化设计研究[D]. 西安: 西北工业大学, 2013. |
CHEN L L. Aeroelastic analysis and optimization of flapping wing micro air vehicle by numerical simulation[D]. Xi’an: Northwestern Polytechnical University, 2013 (in Chinese). | |
134 | YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63-76. |
135 | GUO Y Y, YANG W Q, DONG Y B, et al. Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics[J]. Physics of Fluids, 2022, 34: 081903. |
136 | LIU D, CHENG J A, SONG B F, et al. Numerical investigation of non-planarity and relative motion for bionic slotted wings[J]. AIP Advances, 2023, 13(8): 085322. |
137 | WU P. Experimental characterization, design, analysis and optimization of flexible flapping wings for micro air vehicles[D]. Gainesville: University of Florida, 2010. |
138 | STEWART E C. Shape and structural optimization of flapping wings[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2013. |
139 | STANFORD B, IFJU P. Multi-objective topology optimization of wing skeletons for aeroelastic membrane structures[J]. International Journal of Micro Air Vehicles, 2009, 1(1): 51-69. |
140 | TORRES G, MUELLER T. Low aspect ratio aerodynamics at low Reynolds numbers[J]. AIAA Journal, 2004, 42(5): 865-873. |
141 | SINGH S, ZUBER M, HAMIDON M N, et al. Classification of actuation mechanism designs with structural block diagrams for flapping-wing drones: A comprehensive review[J]. Progress in Aerospace Sciences, 2022, 132: 100833. |
142 | YANG L J, HSU C K, HO J Y, et al. Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle[J]. Sensors and Actuators, A: Physical, 2007, 139(1-2): 95-103. |
143 | YANG L J, HSU C K, HAN H C, et al. Light flapping micro aerial vehicle using electrical-discharge wire-cutting technique[J]. Journal of Aircraft, 2009, 46(6): 1866-1874. |
144 | YANG L J, KAO C Y, HUANG C K. Development of flapping ornithopters by precision injection molding[J]. Applied Mechanics and Materials, 2012, 163: 125-132. |
145 | HSIAO F Y, YANG L J, LIN S H, et al. Autopilots for ultra lightweight robotic birds: Automatic altitude control and system integration of a sub-10 g weight flapping-wing micro air vehicle[J]. IEEE Control Systems Magazine, 2012, 32(5): 35-48. |
146 | YANG L J. The micro-air-vehicle golden snitch and its figure-of-8 flapping[J]. Journal of Applied Science and Engineering, 2012, 15(3): 197-212. |
147 | KARáSEK M, MUIJRES F T, WAGTER C D, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089-1094. |
148 | TAY W B, VAN OUDHEUSDEN B W, BIJL H. Numerical simulation of a flapping four-wing micro-aerial vehicle[J]. Journal of Fluids and Structures, 2015, 55: 237-261. |
149 | BEJGEROWSKI W, GERDES J W, GUPTA S K, et al. Design and fabrication of miniature compliant hinges for multi-material compliant mechanisms[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(5): 437-452. |
150 | JI B, ZHU Q L, GUO S J, et al. Design and experiment of a bionic flapping wing mechanism with flapping-twist-swing motion based on a single rotation[J]. AIP Advances, 2020, 10(6): 065018. |
151 | YOON S, KANG L H, JO S. Development of air vehicle with active flapping and twisting of wing[J]. Journal of Bionic Engineering, 2011, 8(1): 1-9. |
152 | GONG D H, LEE D W, SHIN S J, et al. String-based flapping mechanism and modularized trailing edge control system for insect-type FWMAV[J]. International Journal of Micro Air Vehicles, 2019, 11: 1756829319842547. |
153 | CHEN L, ZHANG Y L, WU J H. Study on lift enhancement of a flapping rotary wing by a bore-hole design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 095441001668892. |
154 | MADANGOPAL R, KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of Mechanical Design, 2005, 127(4): 809-816. |
155 | LANE P, THRONEBERRY G, FERNANDEZ I, et al. Towards bio-inspiration, development, and manufacturing of a flapping-wing micro air vehicle[J]. Drones, 2020, 4(3): 39. |
156 | MARIMUTHU N, ABDULLAH E J, MAJID D L, et al. Conceptual design of flapping wing using shape memory alloy actuator for micro unmanned aerial vehicle[J]. Applied Mechanics and Materials, 2014, 629-629: 152-157. |
157 | ZHAO J W, NIU J Y, MCCOUL D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment[J]. Meccanica, 2015, 50(11): 2815-2824. |
158 | KOFOD G, WIRGES W, PAAJANEN M, et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90(8): 081916. |
159 | 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 024024. |
ZHANG H Z, SONG B F, SUN Z C, et al. Driving mechanism of flapping wing aircraft: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 024024 (in Chinese). | |
160 | TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803-2829. |
161 | SUN M, XIONG Y. Dynamic flight stability of a hovering bumblebee[J]. Journal of Experimental Biology, 2005, 208(3): 447-459. |
162 | SUN M, WANG J K, XIONG Y. Dynamic flight stability of hovering insects[J]. Acta Mechanica Sinica, 2007, 23(3): 231-246. |
163 | OPPENHEIMER M W, DOMAN D B, SIGTHORSSON D O. Dynamics and control of a minimally actuated biomimetic vehicle: Part I—Aerodynamic model[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009. |
164 | DENG X Y, SCHENATO L, WU W C, et al. Flapping flight for biomimetic robotic insects: Part I—System modeling[J]. IEEE Transactions on Robotics, 2006, 22(4): 776-788. |
165 | KHAN Z A, AGRAWAL S K. Modeling and simulation of flapping wing micro air vehicles[C]∥Proceedings of 2005 ASME International Design Engineering Technical Conferences. New York: ASME International, 2005: 24-28. |
166 | GEBERT G, GALLMEIER P, EVERS J. Equations of motion for flapping flight[C]∥Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002. |
167 | LOH K, COOK M. Flight dynamic modelling and control system design for a flapping wing micro aerial vehicle at hover[C]∥Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2003. |
168 | BULER W, LOROCH L, SIBILSKI K, et al. Modeling and simulation of the nonlinear dynamic behavior of a flapping wings micro-aerial-vehicle[C]∥Proceedings of the 42nd AIAA aerospace sciences meeting and exhibit. Reston: AIAA, 2004. |
169 | DIETL J M, GARCIA E. Stability in ornithopter longitudinal flight dynamics[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1157-1163. |
170 | DIETL J, GARCIA E. Stability in hovering ornithopter flight[C]∥Proceedings of SPIE. Bellingham: SPIE, 2008. |
171 | BOLENDER M. Rigid multi-body equations-of-motion for flapping wing MAVs using Kane’s equations[C]∥ Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009. |
172 | GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1675-1679. |
173 | ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J]. AIAA Journal, 2011, 49(5): 969-981. |
174 | ORLOWSKI C T, GIRARD A, SHYY W. Four wing flapping micro air vehicles—Dragonflies or X-wings? [C]∥Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010. |
175 | ORLOWSKI C, GIRARD A, SHYY W. Open loop pitch control of a flapping wing micro-air vehicle using a tail and control mass[C]∥Proceedings of the 2010 American Control Conference. Piscataway: IEEE Press, 2010: 536-541. |
176 | JAHANBIN Z, GHAFARI A S, EBRAHIMI A, et al. Multi-body simulation of a flapping-wing robot using an efficient dynamical model[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38(1): 133-149. |
177 | ROCCIA BRUNO A, PREIDIKMAN S, BALACHAN? DRAN B. Computational dynamics of flapping wings in hover flight: A co-simulation strategy[J]. AIAA Journal, 2017, 55(6): 1806-1822. |
178 | KHOSRAVI M, NOVINZADEH A B. A multi-body control approach for flapping wing micro aerial vehicles[J]. Aerospace Science and Technology, 2021, 112: 106525. |
179 | BARUH H. Analytical dynamics[M]. Boston: WCB/McGraw-Hill, 1999. |
180 | KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York: McGraw-Hill, 1985. |
181 | SLOTINE J J E, LI W. Applied nonlinear control[M]. New York: Prentice-Hall, 1991. |
182 | WANG T T, HE X Y, ZOU Y, FU Q, et al. Research progress on the flight control of flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2023, 45(10): 1630-1640. |
183 | RIFA? H L, MARCHAND N, POULIN-VITTRANT G. Bounded control of an underactuated biomimetic aerial vehicle—Validation with robustness tests[J]. Robotics and Autonomous Systems, 2012, 60(9): 1165-1178. |
184 | TAHMASIAN S, WOOLSEY C A, TAHA H E. Longitudinal flight control of flapping wing micro air vehicles[C]∥Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2014. |
185 | TORRES J Z, DAVILA J, LOZANO R. Attitude and altitude control on board of an ornithopter[C]∥2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 1124-1130. |
186 | LOH K, COOK M, THOMASSON P. An investigation into the longitudinal dynamics and control of a flapping wing micro air vehicle at hovering flight[J]. The Aeronautical Journal, 2003, 107(1078): 743-753. |
187 | ROBERTS L, BRUCK H A, GUPTA S K. Autonomous loitering control for a flapping wing miniature aerial vehicle with independent wing control[C]∥Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York: ASME International, 2014: 17-20. |
188 | CHENG B, DENG X Y. A neural adaptive controller in flapping flight[J]. Journal of Robotics Mechatronics, 2012, 24: 602-611. |
189 | HE W, YAN Z C, SUN C Y, et al. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3452-3465. |
190 | QIAN C, FANG Y C. Adaptive tracking control of flapping wing micro‐air vehicles with averaging theory[J]. CAAI Transactions on Intelligence Technology, 2018, 3(1): 18-27. |
191 | WANG T H, JIN S T, HOU Z S. Model free adaptive pitch control of a flapping wing micro aerial vehicle with input saturation[C]∥2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway: IEEE Press, 2020: 627-632. |
192 | LIANG S R, SONG B F, XUAN J L. Active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing[J]. IEEE Access, 2020, 8: 171359-171372. |
193 | GUCKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M]. New York: Springer-Verlag, 1983. |
194 | SANDERS J A, VERHULST F. Averaging methods in nonlinear dynamical systems[M]. New York: Springer-Verlag, 1985. |
195 | VEIA P A, BURDICK J W. A general averaging theory via series expansions[C]∥Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 1530-1535. |
196 | VEIA P A. Averaging and control of nonlinear systems (with application to biomimetic locomotion)[M]. Pasadena: California Institute of Technology, 2003. |
197 | HOU Z S, JIN S T. Model free adaptive control: Theory and applications[M]. Boca Raton: CRC Press, 2013. |
198 | 韩京清. 从PID技术到“自抗扰控制” 技术[J]. 控制工程, 2002, 9(3): 13-18. |
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9(3): 13-18 (in Chinese). | |
199 | PORNSIN-SIRIRAK T, TAI Y, NASSEF H, et al. Titanium-alloy MEMS wing technology for a micro aerial vehicle application[J]. Sensors & Actuators: A Physical, 2001, 89(1): 95-103. |
200 | WOOD R J. Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV[C]∥2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2007: 1576-1581. |
201 | XIE L X, WU P, IFJU P. Advanced flapping wing structure fabrication for biologically-inspired hovering flight[C]∥The Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2010. |
/
〈 |
|
〉 |