Electronics and Electrical Engineering and Control

Reconfigurable wire⁃driven parallel support mechanism for electromagnetic scattering test

  • Ting LIU ,
  • Qi LIN ,
  • Zhen LIU ,
  • Xiaoguang WANG ,
  • Huisong WU ,
  • Yonggang XU
Expand
  • 1.School of Aerospace Engineering,Xiamen University,Xiamen 361102,China
    2.Science and Technology on Electromagnetic Scattering Laboratory,Shanghai 200438,China
E-mail: qilin@xmu.edu.cn

Received date: 2023-03-07

  Revised date: 2023-04-17

  Accepted date: 2023-05-15

  Online published: 2023-12-18

Supported by

National Natural Science Foundation of China(12072304)

Abstract

In view of the requirement that the rolling attitude of the object needs to be changed in the electromagnetic scattering test, a design scheme of a reconfigurable wire-driven parallel support mechanism is proposed, which can meet the test requirements in full rolling scanning and other attitudes. Its feasibility is theoretically analyzed and experimentally demonstrated. A reconfiguration strategy with a double rotary mechanism is used to construct a reconfigurable wire-driven parallel support mechanism, and the kinematic and static model of the mechanism is derived. Based on the structure matrix of the mechanism, the force closure workspace is solved using the Monte-Carlo method to calculate the attitude workspace for the design parameters. The variation pattern of cable length and the variation characteristics of wire tension are further analyzed for the two composite attitudes motion states of full rolling and pitching, full rolling and pitching and yawing of the target. Further, the electromagnetic scattering characteristics of the foam turntable support and wire structure are tested and analyzed. Finally, a comparative analysis of the radar scattering cross section of an aircraft target supported by the foam turntable support and by the wire-driven parallel support mechanism is carried out. The results indicate that the mechanism proposed shows good low scattering characteristics at 8~12 GHz frequency band. With the two support methods, the absolute value of the test error of the radar cross section of the aircraft target is less than 1 dBsm, and the relative error is between ±10%. The mechanism proposed can expand the ability of electromagnetic scattering test, and has a good prospect in engineering application.

Cite this article

Ting LIU , Qi LIN , Zhen LIU , Xiaoguang WANG , Huisong WU , Yonggang XU . Reconfigurable wire⁃driven parallel support mechanism for electromagnetic scattering test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 328658 -328658 . DOI: 10.7527/S1000-6893.2024.28658

References

1 肖志河, 高超, 白杨, 等. 飞行器雷达隐身测试评估技术及发展[J]. 北京航空航天大学学报201541(10): 1873-1879.
  XIAO Z H, GAO C, BAI Y, et al. Aircraft radar stealth test and evaluation technology and progress[J]. Journal of Beijing University of Aeronautics and Astronautics201541(10): 1873-1879 (in Chinese).
2 BERRIE J A, WILSON G L. Design of target support columns using EPS foam[J]. IEEE Antennas and Propagation Magazine200345(1): 198-206.
3 DALLMANN T, HEBERLING D. A semi-analytical expression for the RCS of a frustum-shaped foam target support structure[C]∥ 2015 9th European Conference on Antennas and Propagation (EuCAP). Piscataway: IEEE Press, 2015: 1-5.
4 BAGGETT M, THOMAS T. Obtaining high quality RCS measurements with a very large foam column[C]∥26th Proceedings of the Antenna Measurement Techniques Association, 2005.
5 JIAO H J, ZHANG Y D, CHEN W Y. The lightweight design of low RCS pylon based on structural bionics[J]. Journal of Bionic Engineering20107(2): 182-190.
6 安大卫, 李志平, 陈五一. 低散射目标支撑金属支架的外形参数优化[J]. 电讯技术201555(3): 333-339.
  AN D W, LI Z P, CHEN W Y. Shape optimization of target support low-scattering metal pylons[J]. Telecommunication Engineering201555(3): 333-339 (in Chinese).
7 唐海正, 徐长龙, 徐得名. 一种新型目标支架的设计和分析[J]. 微波学报200016(4): 434-439.
  TANG H Z, XU C L, XU D M. The analysis and design of a novel target supporter[J]. Journal of Microwaves200016(4): 434-439 (in Chinese).
8 QIAN S, ZI B, SHANG W W, et al. A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering201831(4): 29-39.
9 王晓光, 林麒. 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报201839(10): 022064.
  WANG X G, LIN Q. Progress in wire-driven parallel suspension technologies in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica201839(10): 022064 (in Chinese).
10 游虹, 尚伟伟, 张彬, 等. 基于高速视觉的绳索牵引并联机器人轨迹跟踪控制[J]. 机械工程学报201955(5): 19-26.
  YOU H, SHANG W W, ZHANG B, et al. Trajectory tracking control of cable-driven parallel robots by using high-speed vision[J]. Journal of Mechanical Engineering201955(5): 19-26 (in Chinese).
11 唐乐为, 唐晓强, 汪劲松, 等. 七索并联对接机构作业空间分析及索力优化设计[J]. 机械工程学报201248(21): 1-7.
  TANG L W, TANG X Q, WANG J S, et al. Workspace analysis and tension optimization design in docking parallel mechanism driven by seven cables[J]. Journal of Mechanical Engineering201248(21): 1-7 (in Chinese).
12 CUI Z W, TANG X Q, HOU S H, et al. Research on controllable stiffness of redundant cable-driven parallel robots[J]. IEEE/ASME Transactions on Mechatronics201823(5): 2390-2401.
13 LIN J, WU C Y, CHANG J L. Design and implementation of a multi-degrees-of-freedom cable-driven parallel robot with gripper[J]. International Journal of Advanced Robotic Systems201815(5): :172988141880384.
14 郑亚青, 林麒, 刘雄伟, 等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J]. 航空学报200930(8): 1549-1554.
  ZHENG Y Q, LIN Q, LIU X W, et al. On wire-driven parallel suspension systems for static and dynamic derivatives of aircraft in low-speed wind tunnels[J]. Acta Aeronautica et Astronautica Sinica200930(8): 1549-1554 (in Chinese).
15 NAN R D. Five hundred meter aperture spherical radio telescope (FAST)[J]. Science in China Series G200649(2): 129-148.
16 王文利, 段宝岩. 大射电望远镜FAST的控制与GPS动态检测[J]. 仪器仪表学报200122(1): 49-53.
  WANG W L, DUAN B Y. Control and GPS real-time determination for large radio telescope FAST[J]. Chinese Journal of Scientific Instrument200122(1): 49-53 (in Chinese).
17 黄攀峰, 张帆, 刘彬彬, 等. 辐射开环空间绳系机器人编队自旋转速最优控制[J]. 系统工程与电子技术201537(6): 1362-1369.
  HUANG P F, ZHANG F, LIU B B, et al. Optimal control of the rotating velocity of hub-spoke tethered space robot formation[J]. Systems Engineering and Electronics201537(6): 1362-1369 (in Chinese).
18 张永德, 姜金刚, 张舒, 等. 柔索驱动的玻璃幕墙清洗机器人研制及实验研究[J]. 仪器仪表学报201334(3): 494-501.
  ZHANG Y D, JIANG J G, ZHANG S, et al. Development and experimental study on glass-curtain wall cleaning robot driven by flexible rope[J]. Chinese Journal of Scientific Instrument201334(3): 494-501 (in Chinese).
19 王伟方, 唐晓强, 邵珠峰. 八索立式储罐并联机器人设计及性能优化[J]. 机械工程学报201652(9): 1-8.
  WANG W F, TANG X Q, SHAO Z F. Design and analysis of a wire-driven parallel mechanism for large vertical storage tank[J]. Journal of Mechanical Engineering201652(9): 1-8 (in Chinese).
20 张飞, 张彬, 周烽, 等. 面向自动仓储的绳索牵引并联机器人构型选择与参数优化[J]. 机械工程学报202056(1): 1-8.
  ZHANG F, ZHANG B, ZHOU F, et al. Configuration selection and parameter optimization of redundantly actuated cable-driven parallel robots[J]. Journal of Mechanical Engineering202056(1): 1-8 (in Chinese).
21 AFLAKIAN A, SAFARYAZDI A, MASOULEH M T, et al. Experimental study on the kinematic control of a cable suspended parallel robot for object tracking purpose[J]. Mechatronics201850: 160-176.
22 DUAN B Y, QIU Y Y, ZHANG F S, et al. On design and experiment of the feed cable-suspended structure for super antenna[J]. Mechatronics200919(4): 503-509.
23 冀洋锋. 绳系并联机器人支撑及相关模型风洞试验问题研究[D]. 厦门: 厦门大学, 2017.
  JI Y F. Research on wire-driven parallel robot suspension and the wind tunnel test with related model[D]. Xiamen: Xiamen University, 2017 (in Chinese).
24 訾斌, 王炳尧, 刘浩, 等. 可重构柔索并联机器人协同避障方法研究[J]. 仪器仪表学报201738(3): 593-601.
  ZI B, WANG B Y, LIU H, et al. Study on the collaborative obstacle avoidance method for reconfigurable cable driven parallel robot[J]. Chinese Journal of Scientific Instrument201738(3): 593-601 (in Chinese).
25 NGUYEN D Q, GOUTTEFARDE M. Study of reconfigurable suspended cable-driven parallel robots for airplane maintenance[C]∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 1682-1689.
26 WANG H B, KINUGAWA J, KOSUGE K. Exact kinematic modeling and identification of reconfigurable cable-driven robots with dual-pulley cable guiding mechanisms[J]. IEEE/ASME Transactions on Mechatronics201924(2): 774-784.
27 HESS D W. Introduction to RCS measurements[C]∥ 2008 Loughborough Antennas and Propagation Conference. Piscataway: IEEE Press, 2008: 37-44.
28 郭静. 微波暗室目标RCS测试方法的研究与试验[D]. 南京: 南京航空航天大学, 2008.
  GUO J. Research and examinations on RCS measurements in microwave anechoic chamber[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese).
29 戴建生, 康熙, 宋亚庆, 等. 可重构机构与可重构机器人——分岔演变的运动学分析、综合及其控制[M]. 北京: 高等教育出版社, 2021.
  DAI J S, KANG X, SONG Y Q, et al. Reconfigurable mechanisms and robots:kinematics analysis, synthesis, and control of bifurcation process[M]. Beijing: Higher Education Press, 2021 (in Chinese).
30 PEIDRó A, REINOSO ó, GIL A, et al. An improved Monte Carlo method based on Gaussian growth to calculate the workspace of robots[J]. Engineering Applications of Artificial Intelligence201764: 197-207.
31 WANG X G, HU Y B, LIN Q. Workspace analysis and verification of cable-driven parallel mechanism for wind tunnel test[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2017231(6): 1012-1021.
32 罗发, 周万诚, 赵东林. 结构吸波材料中纤维的电性能和吸波性能[J]. 材料工程200028(2): 37-40.
  LUO F, ZHOU W C, ZHAO D L. The electric and absorbing wave properties of fibers in structural radar absorbing materials[J]. Journal of Materials Engineering200028(2): 37-40 (in Chinese).
33 KNOTT E F. Radar cross section measurements[M]. New York: Van Nostrand Reinhold Company, 1993.
Outlines

/