ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Identification method of rotor blade axial displacement based on blade tip timing
Received date: 2023-03-10
Revised date: 2023-05-08
Accepted date: 2023-07-25
Online published: 2023-08-15
Supported by
National Key Research and Development Program of China(2020YFB2010803);Key Program of National Natural Science Foundation of China(92160203)
Blade tip timing technology has improved in recent years and is now frequently utilized in the monitoring and diagnosis of turbomachinery blade vibration. It is necessary to decouple the measurement results of blade tip timing and determine the axial displacement of the blade, because the measurement results of the blade tip-timing method are the components of the blade tip displacement in the rotational direction, and the change in the position of the measurement points for blade tip timing caused by the axial displacement of the blade also introduces the displacement components in the rotational direction. A blade axial displacement identification method based on the principle of blade tip timing measurement is proposed after analyzing the link between the change in measurement point position and the measurement result. Integrating the blade profile equation, a sample model of blade tip timing that incorporates blade axial displacement is established, and the efficiency of the proposed method is verified by simulation. The measured blade tip timing signals from the adjustable axial displacement aero-engine compressor blade are then used for experimental verification, and the axial displacement identification values of the rotor blade are compared with the actual values, verifying the accuracy of the proposed method. It has significant engineering application value for thoroughly and accurately assessing blade operation status and diagnosing rotor-blade axial displacement faults.
Tianqing LI , Weimin WANG , Xulong ZHANG , Shuhui WANG , Zhenyu FU . Identification method of rotor blade axial displacement based on blade tip timing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 228682 -228682 . DOI: 10.7527/S1000-6893.2024.28682
1 | 敖春燕, 乔百杰, 刘美茹, 等. 基于非接触式测量的旋转叶片动应变重构方法[J]. 航空动力学报, 2020, 35(3): 569-580. |
AO C Y, QIAO B J, LIU M R, et al. Dynamic strain reconstruction method of rotating blades based on no-contact measurement[J]. Journal of Aerospace Power, 2020, 35(3): 569-580 (in Chinese). | |
2 | WANG W M, HU D F, LI Q H, et al. An improved non-contact dynamic stress measurement method for turbomachinery rotating blades based on fundamental mistuning model[J]. Mechanical Systems and Signal Processing, 2020, 144: 106851. |
3 | MOHAMED M. Towards reliable and efficient calibration of blade tip timing measurements against finite element model predictions[D]. Manchester, North West England: University of Manchester, 2019. |
4 | 张旭龙, 王维民, 李天晴, 等. 变转速工况下叶尖计时信号趋势项解析及验证[J]. 航空学报, 2023, 44(5): 310-323. |
ZHANG X L, WANG W M, LI T Q, et al. Analysis and verification of trend term for tip timing signal under variable speed condition[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 310-323 (in Chinese). | |
5 | 刘美茹, 滕光蓉, 肖潇, 等. 基于叶尖定时的航空发动机涡轮叶片振动测量[J]. 航空动力学报, 2020, 35(9): 1954-1963. |
LIU M R, TENG G R, XIAO X, et al. Vibration measurement of turbine rotor blades of aero-engine based on blade tip-timing[J]. Journal of Aerospace Power, 2020, 35(9): 1954-1963 (in Chinese). | |
6 | 王增增, 马宏伟. 航空发动机轴流压气机非整阶振动实验研究进展[J]. 航空动力学报, 2022, 37(11): 2416-2429. |
WANG Z Z, MA H W. Overview of experimental research on non-synchronous vibration in aero-engine axial compressor[J]. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese). | |
7 | 刘海, 娄金伟, 胡伟, 等. 基于叶尖定时原理的整体叶盘振动测试与分析[J]. 航空发动机, 2021, 47(6): 74-79. |
LIU H, LOU J W, HU W, et al. Vibration test and analysis of blisk based on tip-timing theory[J]. Aeroengine, 2021, 47(6): 74-79 (in Chinese). | |
8 | 张玉贵. 烟气轮机叶片振动的非接触式在线监测关键技术研究[D]. 天津: 天津大学, 2008. |
ZHANG Y G. Key technology research on non-contact online monitoring for fume turbine blade vibration[D]. Tianjin: Tianjin University, 2008 (in Chinese). | |
9 | RZADKOWSKI R, KUBITZ L, MAZIARZ M, et al. Tip-timing analysis of last stage steam turbine mistuned bladed disc during run-down[J]. MATEC Web of Conferences, 2018, 211: 03003. |
10 | ZHAO X W, ZHOU Q A, YANG S H, et al. Rotating stall induced non-synchronous blade vibration analysis for an unshrouded industrial centrifugal compressor[J]. Sensors, 2019, 19(22): 4995. |
11 | 陈康, 张娅, 王维民, 等. 基于虚拟传感器内插法的叶片高倍频振动辨识方法[J]. 机械工程学报, 2019, 55(19): 1-8. |
CHEN K, ZHANG Y, WANG W M, et al. Identification method of blade vibration with high EO based on virtual sensor interpolation[J]. Journal of Mechanical Engineering, 2019, 55(19): 1-8 (in Chinese). | |
12 | 李孟麟, 段发阶, 欧阳涛, 等. 基于叶尖定时的旋转机械叶片振动信号重建[J]. 机械工程学报, 2011, 47(13): 98-103. |
LI M L, DUAN F J, OUYANG T, et al. Reconstruction of the blade vibration signal from rotating machinery based on blade tip-timing measurement[J]. Journal of Mechanical Engineering, 2011, 47(13): 98-103 (in Chinese). | |
13 | MOHAMED M, BONELLO P, RUSSHARD P. A novel method for the determination of the change in blade tip timing probe sensing position due to steady movements[J]. Mechanical Systems and Signal Processing, 2019, 126: 686-710. |
14 | 钟龙, 张继旺, 张来斌, 等. 考虑叶尖间隙变化影响的高速旋转叶片监测技术研究[J]. 仪表技术与传感器, 2019(7): 57-60. |
ZHONG L, ZHANG J W, ZHANG L B, et al. High-speed rotating blade monitoring technology considering influence of tip clearance variation[J]. Instrument Technique and Sensor, 2019(7): 57-60 (in Chinese). | |
15 | BATTIATO G, FIRRONE C M, BERRUTI T M. Forced response of rotating bladed disks: Blade Tip-Timing measurements[J]. Mechanical Systems and Signal Processing, 2017, 85: 912-926. |
16 | MOHAMED M, BONELLO P, RUSSHARD P. The determination of steady-state movements using blade tip timing data[C]∥ Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018. |
17 | MOHAMED M, BONELLO P, RUSSHARD P. Determination of simultaneous steady-state movements using blade tip timing data[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019. |
18 | 毛晨丽. 航空发动机叶片截面特征参数检测[D]. 天津: 天津大学, 2016. |
MAO C L. Inspection of aero engine blade cross-sectional feature parameters[D]. Tianjin: Tianjin University, 2016 (in Chinese). | |
19 | 马雯琦. 航空发动机叶片截面特征参数提取技术研究[D]. 天津: 天津大学, 2014. |
MA W Q. Research of the aero engine blade cross-sectional feature parameters extraction[D]. Tianjin: Tianjin University, 2014 (in Chinese). | |
20 | FAN Z F, LI H K, DONG J N, et al. An improved multiple per revolution-based blade tip timing method and its applications on large-scale compressor blades[J]. Mechanical Systems and Signal Processing, 2022, 167: 108538. |
/
〈 |
|
〉 |