ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic behavior of seal-rotor system in a supercritical carbon dioxide turbine during acceleration transition
Received date: 2023-03-06
Revised date: 2023-04-14
Accepted date: 2023-05-04
Online published: 2023-05-09
Supported by
National Natural Science Foundation of China(52206004)
There is a strong coupling relationship between the seal aerodynamic characteristics and rotor motion of supercritical carbon dioxide turbine. The dynamic characteristics of the seal-rotor system undergo uncertain changes in rotor acceleration transition. The user-defined function of the seal-rotor nonlinear whirling model was established based on dynamic equations, which enables the synchronous coupling analysis of seal flow field simulation and rotor dynamics. The seal aerodynamic characteristics and the rotor motion characteristics during the rotor acceleration transition were obtained, and the evolution law of the dynamic characteristics of the seal-rotor system was revealed. The results show that, with the increasing of rotation speed, the rotor whirling center moves laterally in the precession direction, and the whirling radius increases gradually. The rotor whirling center sinks first and then rises. The seal dynamic coefficients fluctuate significantly in the process of rotor acceleration transition. The absolute value of stiffness is large in the high-frequency range, and the absolute value of damping is small. The effective damping has a large fluctuation, and the seal stability is reduced. In the low-speed operation range, the direct stiffness and cross stiffness have significant high-frequency amplitude. In high-speed range, the direct damping has prominent low-frequency amplitude. The increasing of rotation speed makes the fluctuation of effective damping gradually migrate to high frequency. The effective damping has higher amplitude and concentrated distribution around 200 Hz.
Heyong SI , Yaoli WANG , Lihua CAO , Dongchao CHEN . Dynamic behavior of seal-rotor system in a supercritical carbon dioxide turbine during acceleration transition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 228652 -228652 . DOI: 10.7527/S1000-6893.2024.28652
1 | 谢永慧, 王雨琦, 张荻, 等. 超临界二氧化碳布雷顿循环系统及透平机械研究进展[J]. 中国电机工程学报, 2018, 38(24): 7276-7286, 7454. |
XIE Y H, WANG Y Q, ZHANG D, et al. Review on research of supercritical carbon dioxide brayton cycle and turbomachinery[J]. Proceedings of the CSEE, 2018, 38(24): 7276-7286, 7454 (in Chinese). | |
2 | ZHANG W F, CHEN L Q, YANG J, et al. Static instability of the smooth annular seals with choked/unchoked flow[J]. Tribology International, 2020, 144: 106120. |
3 | 尹露, 张万福, 潘渤, 等. 超临界二氧化碳高低齿梳齿密封动力稳定性研究[J]. 摩擦学学报, 2021, 41(1): 115-124. |
YIN L, ZHANG W F, PAN B, et al. Dynamic stability of staggered labyrinth seals with supercritical carbon dioxide[J]. Tribology, 2021, 41(1): 115-124 (in Chinese). | |
4 | VANCE J M, LAUDADIO F J. Experimental measurement of alford’s force in axial flow turbomachinery[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3): 585-590. |
5 | ALFORD J S. Protecting turbomachinery from self-excited rotor whirl[J]. Journal of Engineering for Power,1965,87(10):333-344. |
6 | 陈佐一, 吴晓峰. 用振荡流体力学方法确定非均匀来流对动叶的气动激振力[J]. 动力工程, 1999, 19(2): 8-13. |
CHEN Z Y, WU X F. To determine unsteady aerodynamic force on steam turbine blades by oscillating fluid mechanics method[J]. Power Engineering, 1999, 19(2): 8-13 (in Chinese). | |
7 | 黄典贵,李雪松. 大型旋转机械中汽封间隙流激振力的分析——非定常N-S解[J]. 中国电机工程学报, 2000, 20(6): 75-78. |
HUANG D G, LI X S. A new model of exciting force in a gas seal of large rotating machinery—N-S method[J]. Proceedings of the CSEE, 2000, 20(6): 75-78 (in Chinese). | |
8 | 姚李超, 邹正平, 付超, 等. 超临界二氧化碳再压缩布雷顿循环性能分析及优化设计方法研究[J]. 推进技术, 2022, 43(3): 85-94. |
YAO L C, ZOU Z P, FU C, et al. Performance analysis and optimization design method of supercritical carbon dioxide recompression Brayton cycle[J]. Journal of Propulsion Technology, 2022, 43(3): 85-94 (in Chinese). | |
9 | LEE S, GURGENCI H. A comparison of three methodological approaches for meanline design of supercritical CO2 radial inflow turbines[J]. Energy Conversion and Management, 2020, 206: 112500. |
10 | XIE Z L, JIAO J, YANG K, et al. Experimental and numerical exploration on the nonlinear dynamic behaviors of a novel bearing lubricated by low viscosity lubricant[J]. Mechanical Systems and Signal Processing, 2023, 182: 109349. |
11 | 张万福, 杨兴辰, 王应飞, 等. 交错式迷宫密封动力特性系数实验识别[J]. 中国电机工程学报, 2022, 42(16): 5979-5988, 6172. |
ZHANG W F, YANG X C, WANG Y F, et al. Experimental identification for rotordynamic coefficients of the interlocking labyrinth seal[J]. Proceedings of the CSEE, 2022, 42(16): 5979-5988, 6172 (in Chinese). | |
12 | 丁学俊, 刘顺, 黄来, 等. 600 MW汽轮机隔板汽封流场与汽流激振力的数值计算[J]. 汽轮机技术, 2010, 52(5): 348-350. |
DING X J, LIU S, HUANG L, et al. Numerical calculation on flow field of diaphragm seals and steam-exciting in 600 MW steam turbine[J]. Turbine Technology, 2010, 52(5): 348-350 (in Chinese). | |
13 | 李强, 刘淑莲, 郑水英, 等. 迷宫密封非线性动力特性的数值计算方法[J]. 浙江大学学报(工学版), 2009, 43(3): 500-504. |
LI Q, LIU S L, ZHENG S Y, et al. Numerical calculation of nonlinear dynamic characteristics for labyrinth seals[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(3): 500-504 (in Chinese). | |
14 | 李军, 李志刚. 袋型阻尼密封泄漏流动和转子动力特性的研究进展[J]. 力学进展, 2011, 41(5): 519-536. |
LI J, LI Z G. Review of the leakage flow and rotordynamic characteristics of pocket damper seals[J]. Advances in Mechanics, 2011, 41(5): 519-536 (in Chinese). | |
15 | LI Z G, LI J, YAN X. Multiple frequencies elliptical whirling orbit model and transient RANS solution approach to rotordynamic coefficients of annual gas seals prediction[J]. Journal of Vibration and Acoustics, 2013, 135(3): 031005. |
16 | LI Z G, LI J, FENG Z P. Comparisons of rotordynamic characteristics predictions for annular gas seals using the transient computational fluid dynamic method based on different single-frequency and multifrequency rotor whirling models[J]. Journal of Tribology, 2016, 138(1): 011701. |
17 | ZHANG W F, YIN L, YANG L, et al. Rotordynamic characteristics prediction for scallop damper seals using computational fluid dynamics[J]. Chinese Journal of Aeronautics, 2022, 35(8): 92-106. |
18 | 尹露, 张万福, 张世东, 等. 交错式扇贝阻尼密封动力特性研究[J]. 摩擦学学报, 2021, 41(4): 543-552. |
YIN L, ZHANG W F, ZHANG S D, et al. Dynamic characteristics of interlaced scallop damper seals[J]. Tribology, 2021, 41(4): 543-552 (in Chinese). | |
19 | 陈尧兴, 李志刚, 李军. 非均匀进汽时迷宫密封汽流激振动力特性的研究[J]. 西安交通大学学报, 2017, 51(9): 145-152. |
CHEN Y X, LI Z G, LI J. Fluid excited rotordynamic characteristics of labyrinth seal during non-uniform inlet flowing[J]. Journal of Xi’an Jiaotong University, 2017, 51(9): 145-152 (in Chinese). | |
20 | ZHANG Y Q, LI J, LI Z G, et al. Effect of bristle pack position on the rotordynamic characteristics of brush-labyrinth seals at various operating conditions[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1192-1205. |
21 | 尹露, 张万福, 姜广政, 等. 超临界二氧化碳高低齿梳齿密封动力稳定性研究[J]. 摩擦学学报, 2021, 41(1): 115-124. |
YIN L, ZHANG W F, JIANG G Z, et al. Dynamic stability of staggered labyrinth seals with supercritical carbon dioxide[J]. Tribology, 2021, 41(1): 115-124 (in Chinese). | |
22 | 孙丹, 邹静岚, 赵欢, 等. 实际气体参数对迷宫密封静力与动力特性影响机理研究[J]. 动力工程学报, 2020, 40(1): 14-22, 30. |
SUN D, ZOU J L, ZHAO H, et al. Influence mechanism of real gas parameters on static and dynamic characteristics of labyrinth seals[J]. Journal of Chinese Society of Power Engineering, 2020, 40(1): 14-22, 30 (in Chinese). | |
23 | SI H Y, CAO L H, CHEN D C. Dynamic characteristics of supercritical carbon dioxide (SCO2) seal influenced by multiple factors[J]. Tribology International, 2021, 162: 107131. |
24 | FU C, SINOU J J, ZHU W D, et al. A state-of-the-art review on uncertainty analysis of rotor systems[J]. Mechanical Systems and Signal Processing, 2023, 183: 109619. |
25 | JIA Z Y, YANG Y F, ZHENG Q Y, et al. Dynamic analysis of Jeffcott rotor under uncertainty based on Chebyshev convex method[J]. Mechanical Systems and Signal Processing, 2022, 167: 108603. |
26 | LI W, YANG Y, SHENG D R, et al. A novel nonlinear model of rotor/bearing/seal system and numerical analysis[J]. Mechanism and Machine Theory, 2011, 46(5): 618-631. |
27 | 瓮雷, 杨自春, 曹跃云. 汽轮机非线性间隙气流激振力作用下含裂纹转子的振动特性研究[J]. 振动与冲击, 2016, 35(5): 89-95. |
WENG L, YANG Z C, CAO Y Y. Bifurcation characteristic of a cracked rotor-bearing system under air-exciting forces of steam turbine[J]. Journal of Vibration and Shock, 2016, 35(5): 89-95 (in Chinese). | |
28 | XUE C A, CAO L H, SI H Y. Anisotropic vibration characteristics analysis of steam turbine rotor influenced by steam flow excited force coupling thermal and dynamic loads[J]. Journal of Energy Resources Technology, 2023, 145(7): 071703. |
29 | 司和勇, 曹丽华, 颜洪, 等. 汽流激振力诱导汽轮机转子的非线性运动特征[J]. 中国电机工程学报, 2020, 40(10): 3250-3259. |
SI H Y, CAO L H, YAN H, et al. Nonlinear motion characteristics of steam turbine rotor induced by steam exciting force[J]. Proceedings of the CSEE, 2020, 40(10): 3250-3259 (in Chinese). | |
30 | 司和勇, 曹丽华, 陈东超, 等. 超临界二氧化碳涡轮转子非线性涡动的密封动力特性[J]. 中国电机工程学报, 2023, 43(12): 4669-4678. |
SI H Y, CAO L H, CHEN D C, et al. Seal dynamic characteristics of rotor nonlinear whirl in supercritical carbon dioxide turbine[J]. Proceedings of the CSEE, 2023, 43(12): 4669-4678 (in Chinese). | |
31 | DU Q W, ZHANG L, ZHANG D, et al. Numerical investigation on flow characteristics and aerodynamic performance of shroud seal in a supercritical CO2 axial-flow turbine[J]. Applied Thermal Engineering, 2020, 169: 114960. |
/
〈 |
|
〉 |