Fluid Mechanics and Flight Mechanics

Numerical analysis of civil aircraft ditching performance in wave condition

  • Meng LI ,
  • Xingyi CHEN ,
  • Jichang CHEN ,
  • Bin WU ,
  • Mingbo TONG
Expand
  • 1.Chinese Aeronautical Establishment,Beijing  100012,China
    2.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    3.China Special Vehicle Research Institute,Jingmen  448001,China
E-mail: tongw@nuaa.edu.cn

Received date: 2023-02-24

  Revised date: 2023-04-10

  Accepted date: 2023-08-17

  Online published: 2023-09-04

Supported by

National Natural Science Foundation of China(11672133);A Project Founded by the Priority Academic Program Development of Jiangsu Higher Education institutions

Abstract

To study the ditching performance of civil aircraft in wave conditions, the finite volume method of computational fluid dynamics is used to solve the unsteady incompressible RANS equation. Based on the relevant requirements and suggestions of airworthiness regulations, VOF method, whole dynamic grid method, stokes fifth-order wave model and adaptive grid technology are used to construct the numerical simulation model. The research object is airbus A320-200. Firstly, the ditching process of aircraft in the calm water and wave condition is compared and analyzed. The results show that the maximum horizontal overload is 2.42 g in the wave condition, which is 1.09 times of that in the calm condition. The maximum vertical overload is 4.82 g, which is 2.82 times of that in the calm water condition. In both cases, cushion effect and diving phenomenon are obvious. In the initial stage of impact, the aircraft is affected by water suction. In the wave condition, jumping phenomenon appears, but does not have apparent effect on the ditching process. Secondly, the influence of wave factors on water ditching performance is studied. The results show that with the increase of the wave height, the maximum horizontal and vertical overload increase. With the increase of the wave length, the maximum vertical overload decreases. With the increase of the wave height and length, the maximum sinking velocity increases.

Cite this article

Meng LI , Xingyi CHEN , Jichang CHEN , Bin WU , Mingbo TONG . Numerical analysis of civil aircraft ditching performance in wave condition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 28 -43 . DOI: 10.7527/S1000-6893.2023.28604

References

1 张苏. 水上迫降尾部吸能对飞机运动特性的影响[D]. 武汉: 武汉理工大学, 2013.
  ZHANG S. Effect of energy absorption of tail structure on the kinetic behavior during aricraft ditching[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese).
2 LINDENAU O, RUNG T. Review of transport aircraft ditching accidents[C]∥Proceedings of the 6th International KRASH Users’ Seminar (IKUS6). Stuttgart: TUHH, 2009: 15-17.
3 吴世德, 田彬. 民用飞机水上迫降适航验证程序的研究[J]. 民用飞机设计与研究2007(3): 19-22, 27.
  WU S D, TIAN B. Research on airworthiness verification program of civil aircraft forced landing on water[J]. Civil Aircraft Design and Research2007(3): 19-22, 27 (in Chinese).
4 PATEL A A, GREENWOOD R P JR. Transport water impact and ditching performance[R]. Pleasantville: Galaxy Scientific Corp NJ, 1996.
5 HUGHES K, CAMPBELL J. Helicopter crashworthiness: A chronological review of research related to water impact from 1982 to 2006[J]. Journal of the American Helicopter Society200853(4): 429-441.
6 BENSCH L, SHIGUNOV V, BEUCK G, et al. Planned ditching simulation of a transport airplane[C]∥ KRASH Users Seminar. 2001: 411-439.
7 CAMPBELL J. Prediction of aircraft structural response during ditching: An overview of the SMAES project[C]∥Aerospace Structural Impact Dynamics International Conference. Wichita, Kansas: NCAT, 2012: 105-118.
8 GOMES J B. Numerical simulation of aircraft ditching of a generic transport aircraft: Implementation of an aerodynamic model[D]. Portugal: Instituto Superior Técnico, 2015.
9 GROENENBOOM P, CAMPBELL J, LUIS BENíTEZ M,et al.Innovative SPH methods for aircraft ditching[C]∥WCCM XI-ECCM V-ECFD VI. Barcelona: IACM & ECCOMAS, 2014: 1-12.
10 CLIMENT H, BENITEZ L, ROSICH F, et al. Aircraft ditching numerical simulation[C]∥ 25th Congress of the International Council of the Aeronautical Sciences. 2006.
11 ORTIZ R, PORTEMONT G, CHARLES J L, et al. Assesment of explicit FE capabilities for full scale coupled fluid/structure aircraft ditching simulation[J]. Office National D Etudes ET DE Recherches Aerospatiales Onera-Publications-TP2002 (167): 711.1-711.10.
12 WOODGATE M A, BARAKOS G N, SCRASE N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology201985: 277-292.
13 CLIMENT H, ARéVALO F, VIANA J T, et al. Ditching loads numerical and experimental alternatives[C]∥AIAA International Forum on Aerolasticity and Structural Dynamics. Reston: AIAA, 2019.
14 屈秋林, 刘沛清, 郭保东, 等. 某型客机水上迫降的着水冲击力学性能数值研究[J]. 民用飞机设计与研究2009(): 64-69.
  QU Q L, LIU P Q, GUO B D, et al. Numerical study on the mechanical properties of landing impact of a passenger plane in water landing[J]. Civil Aircraft Design and Research2009(Sup 1): 64-69 (in Chinese).
15 GUO B D, LIU P Q, QU Q L, et al. Effect of pitch angle on initial stage of a transport airplane ditching[J]. Chinese Journal of Aeronautics201326(1): 17-26.
16 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机SAX-40水上迫降力学性能数值研究[J]. 航空学报201334(11): 2443-2451.
  GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica201334(11): 2443-2451 (in Chinese).
17 QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft201552(5): 1550-1558.
18 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报202046(4): 830-838.
  ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics202046(4): 830-838 (in Chinese).
19 张韬, 李书, 代恒超. 大型客机水上迫降尾部吸力效应分析[J]. 中国科学: 技术科学201242(12): 1407-1415.
  ZHANG T, LI S, DAI H C. Analysis of tail suction effect of large passenger plane forced landing on water[J]. Scientia Sinica (Technologica)201242(12): 1407-1415 (in Chinese).
20 CHEN J, XIAO T H, SHEN L, et al. Numerical wave simulation and investigation of air-wave-aircraft interactions[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
21 侯斌. 波浪对直升机应急漂浮系统稳定性的影响[D]. 南京: 南京航空航天大学, 2016.
  HOU B. The influence of water wave on stability of helicopter emergency floating system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
22 HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics198139(1): 201-225.
23 FENTON J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering1985111(2): 216-234.
24 AZCUETA R.Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research200149: 70-79.
25 SPINOSA E, IAFRATI A. Experimental investigation of the fluid-structure interaction during the water impact of thin aluminium plates at high horizontal speed[J]. International Journal of Impact Engineering2021147: 103673.
26 徐文岷, 李凯. 民用飞机弹性结构水上迫降试验载荷研究[J]. 航空学报201435(4): 1012-1018.
  XU W M, LI K. Research on civil aircraft elastic structure ditching test load[J]. Acta Aeronautica et Astronautica Sinica201435(4): 1012-1018 (in Chinese).
27 THOMPSON W C. Rough-water ditching investigation of a model of a jet transport with the landing gear extended and with various ditching aids[M]. Washington, D. C. : NASA, 1959: 3-4.
28 THOMPSON W C. Ditching investigation of a 1/30-scale dynamic model of a heavy jet transport airplane: NASA-TM-X-2445 [R]. Washington, D. C. : NASA, 1972.
Outlines

/