Solid Mechanics and Vehicle Conceptual Design

Efficient variational Bayesian model updating under observation uncertainty

  • Yanhe TAO ,
  • Qintao GUO ,
  • Jin ZHOU ,
  • Jiaqian MA ,
  • Xiaofa LI
Expand
  • 1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.National Key Laboratory of Helicopter Dynamics,Nanjing  210016,China
    3.COMAC Shanghai Aircraft Design and Research Institute,Shanghai  201210,China

Received date: 2023-12-12

  Revised date: 2023-12-26

  Accepted date: 2024-01-17

  Online published: 2024-02-02

Supported by

National Natural Science Foundation of China(U23B20105)

Abstract

A model updating approach is proposed to address uncertainty in complex numerical models with stochastic responses. The approach involves using auto-regressive models for signal feature extraction, utilizing Mahalanobis distance as uncertainty quantification metric, and performing parameter posterior identification through variational Bayesian Monte Carlo. Initially, auto-regressive analysis is conducted on stationary stochastic signals to obtain model feature vectors for dimension reduction. The hybrid uncertainty of experimental observation data is then characterized utilizing the probability-box method. An approximate logarithmic likelihood is constructed based on the Mahalanobis distance between feature vectors of simulated data and experimental observation data. Finally, the variational Bayesian Monte Carlo method is used to solve the marginal likelihood, resulting in the identification of the posterior of parameters after very few iterations. Effectiveness of the proposed method for uncertainty updating in engineering structural models is validated through a numerical case of bolted connection structures and a civil aircraft wing model. The updated model exhibits high accuracy and retains good updating performance under certain levels of observation uncertainty.

Cite this article

Yanhe TAO , Qintao GUO , Jin ZHOU , Jiaqian MA , Xiaofa LI . Efficient variational Bayesian model updating under observation uncertainty[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 229969 -229969 . DOI: 10.7527/S1000-6893.2024.29969

References

1 AHMAD BURHANI A B, WOOK C D, HYEONGILL L. Finite element model updating of composite with adhesive jointed structure under built-up internal stress[J]. Journal of Vibration and Control202228(11-12): 1390-1401.
2 BI S F, BEER M, COGAN S, et al. Stochastic model updating with uncertainty quantification: An overview and tutorial[J]. Mechanical Systems and Signal Processing2023204: 110784.
3 CRESPO L G, KENNY S P, GIESY D P. The NASA langley multidisciplinary uncertainty quantification challenge[C]∥16th AIAA Non-deterministic Approaches Conference. Reston: AIAA, 2014, doi: 10.2514/6.2014-1347 .
4 BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. I: Bayesian statistical framework[J]. Journal of Engineering Mechanics1998124(4): 455-461.
5 FENG K, LU Z, CHEN Z, et al. An innovative Bayesian updating method for laminated composite structures under evidence uncertainty[J]. Composite structures2023304(1):116429.
6 LIAO B P, ZHAO R, YU K P, et al. A novel interval model updating framework based on correlation propagation and matrix-similarity method[J]. Mechanical Systems and Signal Processing2022162(2): 108039.
7 PANDA A K, MODAK S V. A two-stage approach to stochastic finite element model updating using FRF data[J]. Journal of Sound and Vibration2023553: 117670.
8 陈喆, 何欢, 陈国平, 等. 考虑不确定性因素的有限元模型修正方法研究[J]. 振动工程学报201730(6): 921-928.
  CHEN Z, HE H, CHEN G P, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering201730(6): 921-928 (in Chinese).
9 王震宇, 王计真, 杨婧艺, 等. 基于新型粒子群算法的结构动力学热振模型修正[J]. 航空学报202344(7): 226559.
  WANG Z Y, WANG J Z, YANG J Y, et al. Dynamics model updating of structures at high temperature based on novel particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica202344(7): 226559 (in Chinese).
10 杨庆. 基于多级贝叶斯模型修正的结构损伤识别方法研究[D]. 大连: 大连交通大学, 2018: 17-30.
  YANG Q. Study on structural damage identification method based on hierarchical Bayesian model updating[D].Dalian: Dalian Jiaotong University, 2018: 17-30. (in Chinese)
11 SEDEHI O, KATAFYGIOTIS L, PAPADIMITRIOU C. A time-domain hierarchical Bayesian approach for model updating[C]∥The 16th European Conference on Earthquake Engineering (16ECEE). Thessaloniki: European Association for Earthquake Engineering, 2018: 1-11.
12 SEDEHI O, PAPADIMITRIOU C, KATAFYGIOTIS L S. Probabilistic hierarchical Bayesian framework for time-domain model updating and robust predictions[J]. Mechanical Systems and Signal Processing2018123: 648-673.
13 KITAHARA M, BI S F, BROGGI M, et al. Bayesian model updating in time domain with metamodel-based reliability method[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A Civil Engineering20217(3), doi: 10.1061/AJRUA6.0001149 .
14 程马遥, 金银富, 尹振宇, 等. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报201941(12): 2281-2289.
  CHENG M Y, JIN Y F, YIN Z Y, et al. Enhanced DE-TMCMC and its application in identifying parameters of advanced soil model[J]. Chinese Journal of Geotechnical Engineering201941(12): 2281-2289 (in Chinese).
15 TONG W T, GE W, HAN X, et al. A low-complexity algorithm based on variational Bayesian inference for MIMO channel estimation[J]. Applied Acoustics2023211(2): 109512.
16 ZHANG B, HOU Y, YANG Y, et al. Variational Bayesian cardinalized probability hypothesis density filter for robust underwater multi-target direction-of-arrival tracking with uncertain measurement noise[J]. Frontiers in Physics202311, doi: 10.3389/fphy.2023.1142400.
17 蔡巍, 陈明剑, 邓垦, 等. 基于变分贝叶斯自适应鲁棒滤波的动对动相对定位算法[J]. 中国惯性技术学报202331(8): 760-767, 776.
  CAI W, CHEN M J, DENG K, et al. Dynamic to dynamic relative positioning algorithm based on variational Bayesian adaptive robust filtering[J]. Journal of Chinese Inertial Technology202331(8): 760-767, 776 (in Chinese).
18 李明, 柴洪洲, 靳凯迪, 等. 基于可变因子的变分贝叶斯SINS海上动态对准[J]. 海洋测绘202343(4): 47-51.
  LI M, CHAI H Z, JIN K D, et al. Variational Bayesian SINS marine dynamic alignment based on variable factor[J]. Hydrographic Surveying and Charting202343(4): 47-51 (in Chinese).
19 田健. 基于变分贝叶斯滤波的MEMS-SINS/GPS组合导航算法研究[D]. 重庆: 重庆邮电大学, 2021: 35-52.
  TIAN J. Research on MEMS-SINS/GPS integrated navigation based on varitional Bayesian filtering[D].Chongqing: Chongqing University of Posts and Telecommunications, 2021: 35-52. (in Chinese)
20 王彦钧. 基于变分贝叶斯的协同目标跟踪方法研究[D]. 镇江: 江苏大学, 2021: 41-50.
  WANG Y J. Research on cooperative target tracking method based on variational bayes[D].Zhenjiang: Jiangsu University, 2021: 41-50. (in Chinese)
21 巴丽伟, 童常青. 基于变分贝叶斯推断的因子分析法[J]. 杭州电子科技大学学报(自然科学版)202242(3): 95-102.
  BA L W, TONG C Q. Factor analysis based on variational Bayes inference[J]. Journal of Hangzhou Dianzi University (Natural Sciences)202242(3): 95-102 (in Chinese).
22 于汀, 李璐祎, 刘昱杉, 等. 观测不确定性下的高效贝叶斯更新方法及其在机翼结构中的应用[J]. 航空学报202344(24): 117-134.
  YU T, LI L Y, LIU Y S, et al. Efficient Bayesian updating method under observation uncertainty and its application in wing structure[J]. Acta Aeronautica et Astronautica Sinica202344(24): 117-134 (in Chinese).
23 熊芬芬, 李泽贤, 刘宇, 等. 基于数值模拟的工程设计中参数不确定性表征方法研究综述[J]. 航空学报202344(22): 92-123.
  XIONG F F, LI Z X, LIU Y, et al. A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica202344(22): 92-123 (in Chinese).
24 RANGANATH R. Black Box Variational Inference: Scalable, Generic Bayesian Computation and its Applications[D]. Princeton: Princeton University, 2017: 20-27.
25 ZHAO Y H. Gaussian process mixture model for prediction based on maximum posterior distribution[J]. Journal of Physics: Conference Series20212014: 012007.
26 恽鹏. 不确定量测下的变分贝叶斯目标跟踪算法研究[D]. 南京: 南京理工大学, 2022: 14-16.
  YUN P. Research on variational Bayesian target tracking algorithm under uncertain measurement[D].Nanjing: Nanjing University of Science and Technology, 2022: 14-16. (in Chinese)
27 ACERBI L. Variational Bayesian monte carlo[J]. Advances in Neural Information Processing Systems201831: 8222-8232.
28 ACERBI L. Variational Bayesian Monte Carlo with noisy likelihoods[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 8211-8222.
29 CHE Y F, WU X, PASTORE G, et al. Application of Kriging and Variational Bayesian Monte Carlo method for improved prediction of doped UO2 fission gas release[J]. Annals of Nuclear Energy2021153(3): 108046.
30 ZHANG Q, LI Y P, HUANG G H, et al. Copula function with Variational Bayesian Monte Carlo for unveiling uncertainty impacts on meteorological and agricultural drought propagation[J]. Journal of Hydrology2023622: 129669.
31 展铭. 螺栓连接结构动力学多响应模型修正与确认方法研究[D]. 南京: 南京航空航天大学, 2020: 74-75.
  ZHAN M. Research on model updating and validation of bolt jointed structures based on multi dynamic responses[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 74-75 (in Chinese).
32 杨乐昌, 韩东旭, 王丕东. 基于Wasserstein距离测度的非精确概率模型修正方法[J]. 机械工程学报202258(24): 300-311.
  YANG L C, HAN D X, WANG P D. Imprecise probabilistic model updating using A Wasserstein distance-based uncertainty quantification metric[J]. Journal of Mechanical Engineering202258(24): 300-311 (in Chinese).
33 姜东, 吴邵庆, 史勤丰, 等. 基于各向同性本构关系薄层单元的螺栓连接参数识别[J]. 振动与冲击201433(22): 35-40.
  JIANG D, WU S Q, SHI Q F, et al. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship[J]. Journal of Vibration and Shock201433(22): 35-40 (in Chinese).
34 DESAI C S, ZAMAN M M, LIGHTNER J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics19848(1): 19-43.
35 LIAO T, FASANG A. Comparing groups of life-course sequences using the Bayesian information criterion and the likelihood-ratio test[J]. Sociological Methodology202051: 44-85.
36 邓振鸿, 张保强, 苏国强, 等. 基于近似似然的频响函数不确定性模型修正[J]. 振动 测试与诊断202040(3): 548-554, 628.
  DENG Z H, ZHANG B Q, SU G Q, et al. Uncertainty model updating of frequency response function based on approximate likelihood function[J]. Journal of Vibration, Measurement & Diagnosis, 202040(3): 548-554, 628 (in Chinese).
Outlines

/