ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic interference characteristics of near⁃ground multibody separation by electromagnetic launch
Received date: 2023-11-18
Revised date: 2023-12-26
Accepted date: 2024-01-22
Online published: 2024-02-02
Accelerating the aircraft to supersonic speed on the ground by using electromagnetic boosting can avoid the low-speed takeoff phase, and provides a potential solution for wide-speed-range flight. The Mach number 1.6 near-ground multibody free separation process is comprehensively investigated by numerical simulation. The results show that the evolution of supersonic near-ground separation can be divided into three stages, namely, choked flow in the narrow gap, interference induced by multi-body linkage, and independent ground effects. The first stage is featured by multiple reflections of shock waves and local choked flows in the gap between the aircraft and the electromagnetic sled. In the second stage, the flow evolution can be divided into two sub stages: bidirectional interference between the aircraft and the electromagnetic sled, and unidirectional interference from the aircraft to the electromagnetic sled. In the third stage, both the aircraft and the electromagnetic sled are subject to independent ground effects interference. Aerodynamic characteristics of the aircraft and the electromagnetic sled are strongly correlated with the separation stage. The high-pressure region at the leading edge of the electromagnetic sled sweeps past the rear of the aircraft, causing the aerodynamic drag and lift of the aircraft to decrease sharply and the moment to change dramatically from downward force moment to upward force moment. The expansion region and the shock wave in the wake of the aircraft subsequently sweep the electromagnetic sled, causing its lift to first increase to positive lift and then decrease to negative lift. Overall, the attitude of the aircraft flying away from the electromagnetic sled is relatively stable, and the distance between the two continues to increase in both vertical and longitudinal directions.
Shaowei LI , Xin NING , Xingdong LUO , Zihao HOU , Jinglong BO . Aerodynamic interference characteristics of near⁃ground multibody separation by electromagnetic launch[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 129884 -129884 . DOI: 10.7527/S1000-6893.2024.29884
1 | 贺翔, 曹群生. 电磁发射技术研究进展和关键技术[J]. 中国电子科学研究院学报, 2011, 6(2): 130-135. |
HE X, CAO Q S. Development and critical techniques of electromagnetic launch technology[J]. Journal of China Academy of Electronics and Information Technology, 2011, 6(2): 130-135 (in Chinese). | |
2 | 张明元, 马伟明, 汪光森, 等. 飞机电磁弹射系统发展综述[J]. 舰船科学技术, 2013, 35(10): 1-5. |
ZHANG M Y, MA W M, WANG G S, et al. Overview on a significant technology of modern aircraft carrier-electromagnetic aircraft launch system[J]. Ship Science and Technology, 2013, 35(10): 1-5 (in Chinese). | |
3 | 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86. |
XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese). | |
4 | 胡振娴, 张艳清, 尹军茂, 等. 空天飞行器磁悬浮电磁助推发射技术综述[J]. 飞航导弹, 2016(12): 54-59. |
HU Z X, ZHANG Y Q, YIN J M, et al. Overview of magnetic levitation electromagnetic booster launch technology for aerospace vehicles[J]. Aerodynamic Missile Journal, 2016(12): 54-59 (in Chinese). | |
5 | 罗世彬, 刘庆豪, 黄佳, 等. 电磁悬浮助推空天飞行器气动关键技术分析[J]. 飞行力学, 2020, 38(5): 1-7. |
LUO S B, LIU Q H, HUANG J, et al. Analysis of key aerodynamic technologies of electromagnetic levitation assisted aerospace vehicle[J]. Flight Dynamics, 2020, 38(5): 1-7 (in Chinese). | |
6 | MORROW S R, ROOHANI H, SKEWS B W, et al. The aerodynamic performance of an aerofoil in tri-sonic ground effect[C]∥ Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. |
7 | 葛四维, 蒋崇文. 国外超声速地面效应研究进展[J]. 飞航导弹, 2018(2): 47-52. |
GE S W, JIANG C W. Research progress of supersonic ground effect abroad[J]. Aerodynamic Missile Journal, 2018(2): 47-52 (in Chinese). | |
8 | DOIG G C, BARBER T J, LEONARDI E, et al. Methods for investigating supersonic ground effect in a blowdown wind tunnel[J]. Shock Waves, 2008, 18(2): 155-159. |
9 | DOIG G. Transonic and supersonic ground effect aerodynamics[J]. Progress in Aerospace Sciences, 2014, 69: 1-28. |
10 | DOIG G, WANG S B, KLEINE H, et al. Aerodynamic analysis of projectiles in ground effect at near-sonic Mach numbers[J]. AIAA Journal, 2016, 54(1): 150-160. |
11 | BARBER T J, LEONARDI E, ARCHER R D. A technical note on the appropriate CFD boundary conditions for the prediction of ground effect aerodynamics[J]. The Aeronautical Journal, 1999, 103(1029): 545-547. |
12 | KLEINE H, YOUNG J, OAKES B, et al. Aerodynamic ground effect for transonic projectiles[C]∥28th International Symposium on Shock Waves. Berlin, Heidelberg: Springer, 2012: 519-524. |
13 | SHERIDAN C, YOUNG J, KLEINE H, et al. Ground effect of transonic and supersonic projectiles: Influence of Mach number and ground clearance[C]∥Proceedings of the 30th International Symposium on Shock Waves, 2017: 635-640. |
14 | PURDON J P, MUDFORD N R, KLEINE H. Supersonic projectiles in the vicinity of solid obstacles[C]∥ SPIE Proceedings 27th International Congress on High-Speed Photography and Photonics, 2007. |
15 | SUGAR-GABOR O. Numerical study of the circular cylinder in supersonic ground effect conditions[J]. International Review of Aerospace Engineering (IREASE), 2018, 11(1): 15. |
16 | GAO B S, QU Q L, AGARWAL R K. Aerodynamics of a transonic airfoil in ground effect[J]. Journal of Aircraft, 2018, 55(6): 2240-2255. |
17 | 陈晓东, 杨文将, 刘宇, 等. 磁悬浮助推发射气动力分析及风洞试验[J]. 航空动力学报, 2007, 22(9): 1560-1564. |
CHEN X D, YANG W J, LIU Y, et al. Aerodynamic analysis and wind tunnel testing on maglev launch assist[J]. Journal of Aerospace Power, 2007, 22(9): 1560-1564 (in Chinese). | |
18 | 肖虹, 高超, 孙良. 钝头体火箭撬试验地面效应影响的数值模拟[J]. 弹箭与制导学报, 2011, 31(4): 102-104. |
XIAO H, GAO C, SUN L. The numerical simulation of ground effect in blunt rocket sled experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 102-104 (in Chinese). | |
19 | YU Y Y, WANG B, XU C Y, et al. Aerodynamic characteristics of supersonic rocket-sled involving waverider geometry[J]. Applied Sciences, 2022, 12(15): 7861. |
20 | GARDNER C S, LUDLOFF H F. Influence of acceleration on aerodynamic characteristics of thin airfoils in supersonic and transonic flight[J]. Journal of the Aeronautical Sciences, 1950, 17(1): 47-59. |
21 | 宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 025950. |
SONG W, AI B C. Multibody separation dynamics: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 025950 (in Chinese). | |
22 | 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报, 2022, 54(2): 526-542. |
WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a TSTO model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 526-542 (in Chinese). | |
23 | 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023, 44(11): 127634. |
WANG Y, WANG Y P, WANG C, et al. Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 127634 (in Chinese). | |
24 | 王粤,汪运鹏,姜宗林 . 激波风洞 TSTO 纵向级间分离试验技术研究[J]. 航空学报, 2023, 44(20): 128126. |
WANG Y, WANG Y P, Jiang Z L. Research on the test technology of longitudinal stage separation for TSTO in shock tunnel[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(20): 128126 (in Chinese). | |
25 | DECKER J P. Aerodynamic interference effects caused by parallel-staged simple aerodynamic configurations at Mach numbers of 3 and 6: NASA-TN-D-5379[R]. Washington, D.C.: NASA, 1969. |
26 | CVRLJE T, BREITSAMTER C, LASCHKA B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions[J]. Aerospace Science and Technology, 2000, 4(3): 157-171. |
27 | TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology, 2021, 109: 106426. |
28 | HEIM R R. CFD wing/ pylon/ finned store mutual interference wind tunnel experiment[R]. AEDC-TSR-91-P4, 1991. |
29 | HELLMAN B M, BRADFORD J E, GERMAIN B D ST, et al. Two stage to orbit conceptual vehicle designs using the SABRE Engine[C]∥ Proceedings of the AIAA SPACE 2016. Reston: AIAA, 2016. |
/
〈 |
|
〉 |