Electronics and Electrical Engineering and Control

Self⁃adaptive formation control and dynamic path planning for air⁃ground heterogeneous swarm

  • Jiang ZHAO ,
  • Xuan ZHANG ,
  • Pei CHI ,
  • Yingxun WANG
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.Institute of Unmanned System,Beihang University,Beijing 100191,China
E-mail: peichi@buaa.edu.cn

Received date: 2023-11-01

  Revised date: 2023-11-27

  Accepted date: 2024-01-21

  Online published: 2024-02-02

Supported by

Fundamental Research Funds for the Central Universities of China

Abstract

To deal with the collective obstacle avoidance and navigation problem of air-ground unmanned swarm with heterogeneous detection abilities, a self-adaptive formation control and dynamic path planning method is proposed in this paper. Firstly, the mathematical model of Unmanned Aerial Vehicle (UAV) and ground robots describing motion, detection and communication is established respectively. And the control architecture is designed to satisfy the target of collective obstacle avoidance and navigation of the heterogeneous swarm. Secondly, this paper proposes the dynamic formation boundary generation method for ground robot swarm and designs shape control, inter-agent collision avoidance, formation and navigation control component separately to achieve self-adaptive formation control. Furthermore, a path planning method for UAV based on dynamic window approach is proposed in view of the characteristics of dynamic formation boundary. The safety of collective navigation and obstacle avoidance is guaranteed on the basis of self-adaptive formation control by designing optimization function. Finally, the paper designs the scene of formation adaption including scaling, deformation and rotation and task situation of collective obstacle avoidance and navigation through narrow corridors. The effectiveness of the proposed self-adaptive formation control and dynamic path planning for air-ground unmanned swarm is validated through simulation, and the applicable boundary of the proposed method is further analyzed.

Cite this article

Jiang ZHAO , Xuan ZHANG , Pei CHI , Yingxun WANG . Self⁃adaptive formation control and dynamic path planning for air⁃ground heterogeneous swarm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 329809 -329809 . DOI: 10.7527/S1000-6893.2024.29809

References

1 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报202041(S1): 723738.
  JIA Y N, TIAN S Y, LI Q. Review on research progress of UAV cluster[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723738 (in Chinese).
2 CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics201834(4): 837-855.
3 牛轶峰, 刘俊艺, 熊进, 等. 无人机群协同跟踪地面多目标导引方法研究[J]. 中国科学: 技术科学202050(4): 403-422.
  NIU Y F, LIU J Y, XIONG J, et al. Research on guidance method of cooperative tracking ground multi-target using UAV group[J]. Scientia Sinica (Technologica)202050(4): 403-422 (in Chinese).
4 刘云昊, 邓亦敏, 段海滨, 等. 基于飞蛾信息素寻偶机制的无人机集群协同搜索[J]. 国防科技大学学报202244(4): 22-31.
  LIU Y H, DENG Y M, DUAN H B, et al. Unmanned aerial vehicle swarm cooperative search based on moth pheromone courtship mechanism[J]. Journal of National University of Defense Technology202244(4): 22-31 (in Chinese).
5 王孟阳, 张栋, 唐硕, 等. 基于动态联盟策略的无人机集群在线任务规划方法[J]. 兵工学报202344(8): 2207-2223.
  WANG M Y, ZHANG D, TANG S, et al. UAV swarm on-line mission planning method based on dynamic allocation strategy[J]. Acta Armamentarii202344(8): 2207-2223 (in Chinese).
6 RIZK Y, AWAD M, TUNSTEL E W. Cooperative heterogeneous multi-robot systems: A survey[J]. ACM Computing Surveys52(2): 29.
7 李明龙, 杨文婧, 易晓东, 等. 面向灾难搜索救援场景的空地协同无人群体任务规划研究[J]. 机械工程学报201955(11): 1-9.
  LI M L, YANG W J, YI X D, et al. Swarm robot task planning based on air and ground coordination for disaster search and rescue[J]. Journal of Mechanical Engineering201955(11): 1-9 (in Chinese).
8 DING Y L, XIN B, CHEN J. A review of recent advances in coordination between unmanned aerial and ground vehicles[J]. Unmanned Systems20219(2): 97-117.
9 CHEN J, ZHANG X, XIN B, et al. Coordination between unmanned aerial and ground vehicles: A taxonomy and optimization perspective[J]. IEEE Transactions on Cybernetics201646(4): 959-972.
10 RAHIMI R, ABDOLLAHI F, NAQSHI K. Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems201462(12): 1799-1805.
11 魏志强, 翁哲鸣, 化永朝, 等. 切换拓扑下异构无人集群编队-合围跟踪控制[J]. 航空学报202344(2): 326504.
  WEI Z Q, WENG Z M, HUA Y Z, et al. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica202344(2): 326504 (in Chinese).
12 周思全, 董希旺, 李清东, 等. 无人机-无人车异构时变编队控制与扰动抑制[J]. 航空学报202041(S1): 723767.
  ZHOU S Q, DONG X W, LI Q D, et al. UAV-UAV heterogeneous time-varying formation control and disturbance suppression[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723767 (in Chinese).
13 ARANDA M, LóPEZ-NICOLáS G, SAGüéS C, et al. Formation control of mobile robots using multiple aerial cameras[J]. IEEE Transactions on Robotics201531(4): 1064-1071.
14 ARANDA M, MEZOUAR Y, LóPEZ-NICOLáS G, et al. Scale-free vision-based aerial control of a ground formation with hybrid topology[J]. IEEE Transactions on Control Systems Technology201927(4): 1703-1711.
15 REN Y, ZHANG K, JIANG B, et al. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems[J]. International Journal of Robust and Nonlinear Control202232(5): 2864-2882.
16 马亚杰, 王娟, 姜斌, 等. 一种无人机-无人车编队系统容错控制方法[J]. 航空学报202344(8): 327216.
  MA Y J, WANG J, JIANG B, et al. A fault-tolerant control scheme for UAVs-UGVs formation systems[J]. Acta Aeronautica et Astronautica Sinica202344(8): 327216 (in Chinese).
17 SASKA M, VONáSEK V, KRAJNíK T, et al. Coordination and navigation of heterogeneous MAV–UGV formations localized by a ‘hawk-eye’-like approach under a model predictive control scheme[J]. The International Journal of Robotics Research201433(10): 1393-1412.
18 WANG W, GUO J Y, TIAN G Q, et al. Event-triggered intervention framework for UAV-UGV coordination systems[J]. Machines20219(12): 371.
19 NIU G C, WU L, GAO Y F, et al. Unmanned aerial vehicle (UAV)-assisted path planning for unmanned ground vehicles (UGVs) via disciplined convex-concave programming[J]. IEEE Transactions on Vehicular Technology202271(7): 6996-7007.
20 LONG N K, SAMMUT K, SGARIOTO D, et al. A comprehensive review of shepherding as a bio-inspired swarm-robotics guidance approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence20204(4): 523-537.
21 STR?MBOM D, MANN R P, WILSON A M, et al. Solving the shepherding problem: Heuristics for herding autonomous, interacting agents[J]. Journal of the Royal Society, Interface, 201411(100): 20140719.
22 NGUYEN H T, NGUYEN T D, GARRATT M, et al. A deep hierarchical reinforcement learner for aerial shepherding of ground swarms[C]∥ International Conference on Neural Information Processing. Cham: Springer, 2019: 658-669.
23 梁晓龙, 孙强, 尹忠海, 等. 大规模无人系统集群智能控制方法综述[J]. 计算机应用研究201532(1): 11-16.
  LIANG X L, SUN Q, YIN Z H, et al. Review on large-scale unmanned system swarm intelligence control method[J]. Application Research of Computers201532(1): 11-16 (in Chinese).
24 OLFATI-SABER R. Flocking for multi-agent dynamic systems: algorithms and theory[J]. IEEE Transactions on Automatic Control200651(3): 401-420.
25 FANG W X, ZHAO J B, PAN Y C. Combined flocking and region-based shape control for multi-agent systems[C]∥ 2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 3557-3562.
26 ZHAO H T, LIU H, LEUNG Y W, et al. Self-adaptive collective motion of swarm robots[J]. IEEE Transactions on Automation Science and Engineering201815(4): 1533-1545.
27 HU J Y, TURGUT A E, KRAJNíK T, et al. Occlusion-based coordination protocol design for autonomous robotic shepherding tasks[J]. IEEE Transactions on Cognitive and Developmental Systems202214(1): 126-135.
Outlines

/