ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flow control drag reduction of hub on coaxial rigid rotor aircraft
Received date: 2023-05-30
Revised date: 2023-08-07
Accepted date: 2023-11-13
Online published: 2024-02-02
Supported by
Provincial and Ministerial Level Project(221GJBJK0016)
In response to the issue that the hub drag accounts for a significant portion of the overall drag in the coaxial rigid rotor helicopter during high-speed forward flight, the flow mechanism of the hub model without blades is studied through numerical simulation and wind tunnel tests. The outer shape of the intermediate shaft fairing is optimized to achieve better drag reduction effects. Meanwhile,based on the optimized hub shape and flow field analysis results, an active flow control strategy with jet blowing is introduced, and its impact on hub drag reduction is investigated through wind tunnel tests using different slot configurations, gap sizes, jet angles, and jet momentum coefficients. The feasibility of using active flow control technology for hub drag reduction in coaxial dual-rotor hubs is demonstrated. The intermediate shaft fairing can effectively reduce the airflow separation at the rear of the intermediate shaft, achieving the goal of reducing the drag of the coaxial rigid rotor hub. The drag area of the HBF2 configuration is reduced by 30.3% compared to that of the HBS configuration. The drag area of the hub model with blade roots in rotation is larger than that without blade roots. The proposed active flow control technology can suppress the flow separation at the trailing edge of the intermediate shaft fairing to achieve drag reduction. The oblique jet configuration has a better drag reduction effect than the straight jet configuration. When using the oblique slot configuration with a gap size of 1 mm, jet angle of 30°, and jet momentum coefficient of 0.33, the hub drag can be further reduced by 13% compared to that based on the optimized intermediate shaft fairing shape, achieving the best drag reduction effect.
Chang WANG , Long HE , Dongxia XU , Min TANG , Shuai MA , Ximing WU . Flow control drag reduction of hub on coaxial rigid rotor aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(9) : 529084 -529084 . DOI: 10.7527/S1000-6893.2023.29084
1 | 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179. |
WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179 (in Chinese). | |
2 | COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research: NASA-TP-3675[R]. Washington, D.C.: NASA,1997. |
3 | BAGAI A. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]∥ Proceedings of 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society Inter-national, Inc., 2008: 29-44. |
4 | 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012, 23(3): 9-14. |
DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14 (in Chinese). | |
5 | 朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报, 2016, 37(2): 568-578. |
ZHU Z, ZHAO Q J, LI P. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 568-578 (in Chinese). | |
6 | 卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报, 2019, 40(11): 122906. |
LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122906 (in Chinese). | |
7 | 吴希明. 共轴刚性旋翼空气动力学问题与研究进展[J]. 南京航空航天大学学报, 2019, 51(2): 137-146. |
WU X M. Aerodynamic problems and research progresses of rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 137-146 (in Chinese). | |
8 | FELKER F F. An experimental investigation of hub drag on the XH-59A: AIAA-1985-4065[R]. Reston: AIAA, 1985. |
9 | YOUNG L A, GRAHAM D R, STROUB R H. Experimental investigation of rotorcraft hub and shaft fairing drag reduction[J]. Journal of Aircraft, 1987, 24(12): 861-867. |
10 | WAKE B E, HAGEN E, OCHS S S, et al. Assesment of helicopter hub drag prediction with an unstructured flow solver[C]∥ Proceedings of 65th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2009: 2422-2433. |
11 | BOTROS B, BOWLES P, MATALANIS C, et al. Numerical assessment of flow control technologies for coaxial high-speed rotorcraft[C]∥ AHS Technical Meeting on Aeromechanics Design for Vertical Lift. Washington, D.C.: American Helicopter Society International, Inc., 2016: 385-394. |
12 | 龙海斌, 吴裕平, 朱仁淼. 共轴式双旋翼直升机桨毂减阻设计方法研究[J]. 直升机技术, 2017(2): 22-26. |
LONG H B, WU Y P, ZHU R M. Study on drag reduction design method of coaxial twin rotor helicopter hub[J]. Helicopter Technique, 2017(2): 22-26 (in Chinese). | |
13 | 曾伟, 林永峰, 黄水林, 等. 共轴双旋翼桨毂减阻初步分析研究[J]. 直升机技术, 2014(4): 14-18. |
ZENG W, LIN Y F, HUANG S L, et al. Preliminary analytical study on drag reduction of coaxial rotors hub[J]. Helicopter Technique, 2014(4): 14-18 (in Chinese). | |
14 | 何龙, 王畅, 唐敏, 等. 共轴刚性旋翼直升机桨毂阻力特性试验[J]. 南京航空航天大学学报, 2016, 48(4): 530-535. |
HE L, WANG C, TANG M, et al. Drag characteristic test for hub of coaxial-rigid-rotor helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4): 530-535 (in Chinese). | |
15 | 何龙. 高速直升机共轴双桨毂阻力特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016. |
HE L. Research on drags of coaxial hub high speed helicopter[D]. Mianyang: China Aerodynamics Research and Development Center, 2016 (in Chinese). | |
16 | 梁勇, 何龙, 王畅, 等. 共轴刚性旋翼桨毂阻力特性及流动机理[J]. 南京航空航天大学学报, 2019, 51(2): 171-177. |
LIANG Y, HE L, WANG C, et al. Drag characteristics and flow mechanism for coaxial rigid rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 171-177 (in Chinese). | |
17 | 唐敏, 黄明其, 杨永东, 等. 共轴刚性旋翼桨毂阻力特性试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 208-212. |
TANG M, HUANG M Q, YANG Y D, et al. Experimental investigation of coaxial rotors hub drag characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 208-212 (in Chinese). | |
18 | BOWLES P O, THOMAS M, MIN B Y, et al. Experimental investigation of passive and active flow control for X2 technologyTM hub and fuselage drag reduction[C]∥ Proceedings of 72nd Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society International, Inc., 2016: 560-574. |
19 | 马率, 王建涛, 邱名, 等. 涡桨飞机滑流影响的非定常数值模拟验证[J]. 空气动力学学报, 2019, 37(5): 804-812. |
MA S, WANG J T, QIU M, et al. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. Acta Aerodynamica Sinica, 2019, 37(5): 804-812 (in Chinese). | |
20 | 马率, 邱名, 王建涛, 等. CFD在螺旋桨飞机滑流影响研究中的应用[J]. 航空学报, 2019, 40(4): 622365. |
MA S, QIU M, WANG J T, et al. Application of CFD in slipstream effect on propeller aircraft research[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622365 (in Chinese). | |
21 | 何龙, 王畅, 唐敏, 等. 一种双旋翼同步反转装置: CN106441787B[P]. 2018-10-26. |
HE L, WANG C, TANG M, et al. A dual-rotor synchronized reversing device: CN106441787B[P]. 2018-10-26 (in Chinese). | |
22 | 国防科学技术工业委员会. 高速风洞和低速风洞测力实验精度指标: [S]. 1991. |
Commission of Science Technology and Industry for National Defense. Requirement for force-test precision of high and low speed wind tunnels: [S]. 1991 (in Chinese). | |
23 | 何龙, 李东, 徐栋霞, 等. 一种用于共轴刚性旋翼桨毂减阻的射流结构及其使用方法: CN113460299A[P]. 2021-10-01. |
HE L, LI D, XU D X, et al. A jet structure and its usage method for drag reduction of coaxial rigid rotor hub: CN113460299A[P]. 2021-10-01 (in Chinese). |
/
〈 |
|
〉 |