ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fully-actuated prescribed performance control of spacecraft formation for flying cooperatively around non-cooperative target
Received date: 2023-04-21
Revised date: 2023-05-15
Accepted date: 2023-06-28
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(62103446);Fund of Hunan Provincial Natural Science(2022JJ20081);Funding of Science and Technology on Aerospace Flight Dynamics Laboratory(KJW6142210210306);Central South University Innovation-Driven Research Program(2023CXQD066)
To address the cooperative control problem of using spacecraft formation for approaching and flying around the non-cooperative target, a distributed prescribed performance control method based on the fully-actuated system theory is proposed in consideration of external interference and unexpected orbital maneuvers. First, a relative dynamic model for the service spacecraft formation and the non-cooperative target is established based on the line-of-sight coordinate system, and the fully-actuated control law is constructed to reduce the complexity of controller design. Furthermore, a distributed agreed-time prescribed performance controller is designed using the topology theory to ensure the control performance of the spacecraft formation around the target. In addition, an extended state observer is employed to observe and compensate for the uncertainties and disturbances in the system, thereby improving the control precision and robustness in spacecraft formation flying around the target. Finally, the effectiveness of the designed control method is verified by two sets of flying around simulations.
Zeyang YIN , Youpeng XING , Fei HAN , Caisheng WEI , Yuxin LIAO . Fully-actuated prescribed performance control of spacecraft formation for flying cooperatively around non-cooperative target[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(1) : 628904 -628904 . DOI: 10.7527/S1000-6893.2024.28904
1 | 胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022, 43(10): 527351. |
HU Q L, SHAO X D, YANG H Y, et al. Spacecraft attitude planning and control under multiple constraints: review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527351 (in Chinese). | |
2 | LI Y X, HUO J, MA P, et al. Target localization method of non-cooperative spacecraft on on-orbit service[J]. Chinese Journal of Aeronautics, 2022, 35(11): 336-348. |
3 | HUANG Y, JIA Y M. Adaptive fixed-time relative position tracking and attitude synchronization control for non-cooperative target spacecraft fly-around mission[J]. Journal of the Franklin Institute, 2017, 354(18): 8461-8489. |
4 | 黄宇嵩, 田栋, 李洪珏, 等. 一种翻滚非合作航天器抵近绕飞避障轨迹规划和跟踪控制方法[J]. 空间控制技术与应用, 2021, 47(3): 1-8. |
HUANG Y S, TIAN D, LI H J, et al. A trajectory planning and tracking algorithm for the tumbling non-cooperative spacecraft approach, flying-around and obstacle avoidance[J]. Aerospace Control and Application, 2021, 47(3): 1-8 (in Chinese). | |
5 | WANG Y, JI H B. Input-to-state stability-based adaptive control for spacecraft fly-around with input saturation[J]. IET Control Theory & Applications, 2020, 14(10): 1365-1374. |
6 | 徐影, 张进, 于沫尧, 等. 多星近距离绕飞观测任务姿轨耦合控制研究[J]. 中国空间科学技术, 2019, 39(6): 21-29. |
XU Y, ZHANG J, YU M Y, et al. Attitude and orbit coupling control for fly-around observation of multi-satellite proximity operation[J]. Chinese Space Science and Technology, 2019, 39(6): 21-29 (in Chinese). | |
7 | BAI S Z, HAN C, RAO Y R, et al. New fly-around formations for an elliptical reference orbit[J]. Acta Astronautica, 2020, 171: 335-351. |
8 | 常燕, 陈韵, 鲜勇, 等. 椭圆轨道上目标监测绕飞轨道构型设计与构型保持[J]. 系统工程与电子技术, 2017, 39(6): 1317-1324. |
CHANG Y, CHEN Y, XIAN Y, et al. Configuration design and maintenance of flyaround trajectory for target monitoring in elliptical orbit[J]. Systems Engineering and Electronics, 2017, 39(6): 1317-1324 (in Chinese). | |
9 | ZHANG R, HAN C, RAO Y R, et al. Spacecraft fast fly-around formations design using the Bi-teardrop configuration[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1542-1555. |
10 | HUANG Y, JIA Y M. Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation[J]. IET Control Theory & Applications, 2018, 12(4): 532-542. |
11 | ZHOU N, XIA Y Q, FU M, et al. Distributed cooperative control design for finite-time attitude synchronisation of rigid spacecraft[J]. IET Control Theory and Applications, 2015, 9: 1561-1570. |
12 | 李学辉, 宋申民. 慢旋非合作目标快速绕飞避碰控制[J]. 控制与决策, 2018, 33(9): 1612-1618. |
LI X H, SONG S M. Slowly rotating non-cooperative target fast fly-around collision avoidance control[J]. Control and Decision, 2018, 33(9): 1612-1618 (in Chinese). | |
13 | SUN G J, ZHOU M Q, JIANG X Q. Non-cooperative spacecraft proximity control considering target behavior uncertainty[J]. Astrodynamics, 2022, 6(4): 399-411. |
14 | HAN D, LIU Z X, HUANG P F. Capture and detumble of a non-cooperative target without a specific gripping point by a dual-arm space robot[J]. Advances in Space Research, 2022, 69(10): 3770-3784. |
15 | 黄艺, 贾英民. 非合作目标绕飞任务的航天器鲁棒姿轨耦合控制[J]. 控制理论与应用, 2018, 35(10): 1405-1414. |
HUANG Y, JIA Y M. Robust relative position and attitude control for non-cooperative fly-around mission[J]. Control Theory & Applications, 2018, 35(10): 1405-1414 (in Chinese). | |
16 | DONG F F, JIN D, ZHAO X M, et al. A non-cooperative game approach to the robust control design for a class of fuzzy dynamical systems[J]. ISA Transactions, 2022, 125: 119-133. |
17 | DUAN G R. High-order fully actuated system approaches: part I. models and basic procedure[J]. International Journal of Systems Science, 2021, 52(2): 422-435. |
18 | DUAN G R. High-order fully actuated system approaches: part II. generalized strict-feedback systems[J]. International Journal of Systems Science, 2021, 52(3): 437-454. |
19 | ZHOU B, DUAN G R. On the role of zeros in the pole assignment of scalar high-order fully actuated linear systems[J]. Journal of Systems Science and Complexity, 2022, 35(2): 535-542. |
20 | DUAN G Q, LIU G P. Attitude and orbit optimal control of combined spacecraft via a fully-actuated system approach[J]. Journal of Systems Science and Complexity, 2022, 35(2): 623-640. |
21 | XIAO F Z, CHEN L Q. Fully actuated systems in terms of quaternions for spacecraft attitude control[J]. Acta Astronautica, 2023, 209: 1-5. |
22 | XIAO F Z, CHEN L Q. Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches[J]. Journal of Systems Science and Complexity, 2022, 35(2): 471-480. |
23 | 潘汉, 曹姝清, 武海雷, 等. 基于截断最小二乘和半正定规划的空间非合作目标相对位姿估计[J]. 飞控与探测, 2022, 5(4): 50-56. |
PAN H, CAO S Q, WU H L, et al. Non-cooperative space target relative pose estimation via truncated least squares and semi-definite programming[J]. Flight Control & Detection, 2022, 5(4): 50-56 (in Chinese). | |
24 | ZHANG K, DUAN G R, MA M D. Adaptive sliding-mode control for spacecraft relative position tracking with maneuvering target[J]. International Journal of Robust and Nonlinear Control, 2018, 28(18): 5786-5810. |
25 | 宁君, 陈汉民, 李伟, 等. 基于扩张状态观测器的有限时间船舶编队控制[J]. 中国舰船研究, 2023, 18(1): 60-66. |
NING J, CHEN H M, LI W, et al. Finite-time ship formation control based on extended state observer[J]. Chinese Journal of Ship Research, 2023, 18(1): 60-66 (in Chinese). | |
26 | YIN Z Y, SULEMAN A, LUO J J, et al. Appointed-time prescribed performance attitude tracking control via double performance functions[J]. Aerospace Science and Technology, 2019, 93: 105337. |
27 | KHALIL H K. Nonlinear systems[M]. 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002. |
28 | BAINOV D, SIMEONOV P. Integral Inequalities and Applications[M]. Dordrecht: Springer Netherlands, 1992. |
29 | SONTAG E D. Mathematical control theory: deterministic finite dimensional systems[M]. 2nd ed. New York: Springer, 1998. |
30 | PAN Z H, ZHANG C X, XIA Y Q, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1129-1133. |
/
〈 |
|
〉 |