Electronics and Electrical Engineering and Control

Reentry glide analytical guidance considering time constraints

  • Peichen WANG ,
  • Xunliang YAN ,
  • Xinguo LI ,
  • Zian WANG
Expand
  • 1.Shaanxi Aerospace Flight Vehicle Design Key Laboratory,School of Astronautics,Northwestern Polytechnical Uni?versity,Xi’an 710072,China
    2.Research Development Center,China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: xly_nwpu@126.com

Received date: 2023-11-07

  Revised date: 2023-12-04

  Accepted date: 2024-01-05

  Online published: 2024-01-24

Supported by

National Natural Science Foundation of China(11602296);Natural Science Basis Research Plan in Shaanxi Province(2019JM-434);The Open Fund of the Intelligent Control Laboratory(2023-ZKSYS-KF04-02)

Abstract

A time controllable entry guidance method is proposed based on analytical design of drag-energy profile, online adaptive analytical update, and robust tracking algorithm. Firstly, a multi-segment smooth drag-energy standard profile based on corridor boundary dual parameter interpolation is designed, and multiple constraints including terminal flight path angle are applied. Then, the analytical predictive formulas for time and range to-go considering the influence of earth rotation are derived, and high-precision analytical design of the standard profile is completed by correcting the double parameters of the profile. Subsequently, a drag-energy profile online adaptive update strategy based on dual/single parameter sequential solution mode is designed, which can adaptively switch between two profile update algorithms based on real-time situation, and complete analytical update of the remaining profile adaptively, satisfying the constraints of terminal energy, flight path angle, range and flight time. On this basis, a standard profile tracking algorithm and time controllable entry analytical guidance algorithm framework are designed, achieving online rapid generation of guidance commands. Finally, using CAV-H entry glide as an example, simulation is conducted to verify the effectiveness, computational efficiency, and multi-task applicability of the proposed method. Compared with current methods based on analytical predictor-corrector guidance, the proposed method has higher time, range and terminal states control accuracy. Compared with existing methods based on standard profile, the proposed method has higher computational efficiency and larger adjustable time range.

Cite this article

Peichen WANG , Xunliang YAN , Xinguo LI , Zian WANG . Reentry glide analytical guidance considering time constraints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(23) : 329844 -329844 . DOI: 10.7527/S1000-6893.2024.29844

References

1 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报202041(1): 023377.
  ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica202041(1): 023377 (in Chinese).
2 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报201738(1): 020256.
  ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica201738(1): 020256 (in Chinese).
3 郭明坤, 杨峰, 刘凯, 等. 高超声速飞行器协同制导技术研究进展[J]. 空天技术2022(2): 75-84.
  GUO M K, YANG F, LIU K, et al. Review on cooperative guidance technology for hypersonic flight vehicle[J]. Aerospace Technology2022(2): 75-84 (in Chinese).
4 HARPOLD J C, GRAVES C A. Shuttle entry guidance[J]. Journal of the Astronautical Sciences197927(3): 239-268.
5 SARAF A, LEAVITT J A, CHEN D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets200441(6): 986-996.
6 GUO J, WU X Z, TANG S J. Autonomous gliding entry guidance with geographic constraints[J]. Chinese Journal of Aeronautics201528(5): 1343-1354.
7 XIE Y, LIU L H, TANG G J, et al. Highly constrained entry trajectory generation[J]. Acta Astronautica201388: 44-60.
8 LU P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics200831(4): 1067-1075.
9 LU P. Entry guidance: A unified method[J]. Journal of Guidance, Control, and Dynamics201437(3): 713-728.
10 LIANG Z X, YU J L, REN Z, et al. Trajectory planning for cooperative flight of two hypersonic entry vehicles: AIAA-2017-2251[R]. Reston: AIAA, 2017.
11 姜鹏, 郭栋, 韩亮, 等. 多飞行器再入段时间协同弹道规划方法[J]. 航空学报202041(S1): 723776.
  JIANG P, GUO D, HAN L, et al. Trajectory planning method of multi-vehicle entry phase time coordination[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723776 (in Chinese).
12 LIANG Z X, LV C, ZHU S Y. Lateral entry guidance with terminal time constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202359(3): 2544-2553.
13 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报201940(3): 322565.
  WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica201940(3): 322565 (in Chinese).
14 王浩凝, 唐胜景, 郭杰, 等. 带有动态攻角剖面的时间约束再入制导[J]. 空天防御20214(1): 71-76.
  WANG H N, TANG S J, GUO J, et al. Time-constrained entry guidance with dynamic angle of attack profile[J]. Air & Space Defense20214(1): 71-76 (in Chinese).
15 乔浩, 李师尧, 李新国. 多高超声速飞行器静态协同再入制导方法[J]. 宇航学报202041(5): 541-552.
  QIAO H, LI S Y, LI X G. Static cooperative entry guidance method for multi-hypersonic vehicles[J]. Journal of Astronautics202041(5): 541-552 (in Chinese).
16 YU J L, DONG X W, LI Q D, et al. Cooperative guidance strategy for multiple hypersonic gliding vehicles system[J]. Chinese Journal of Aeronautics202033(3): 990-1005.
17 LI Z H, HE B, WANG M H, et al. Time-coordination entry guidance for multi-hypersonic vehicles[J]. Aerospace Science and Technology201989: 123-135.
18 刘哲, 陆浩然, 郑伟, 等. 多滑翔飞行器时间协同轨迹快速规划[J]. 航空学报202142(11): 524497.
  LIU Z, LU H R, ZHENG W, et al. Rapid time-coordination trajectory planning method for multi-glide vehicles[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524497 (in Chinese).
19 韩嘉俊, 王小虎, 郝昀, 等. 带有时间约束的再入滑翔轨迹设计[J]. 宇航学报202041(4): 438-446.
  HAN J J, WANG X H, HAO Y, et al. Entry trajectory planning with flight time constraints[J]. Journal of Astronautics202041(4): 438-446 (in Chinese).
20 刘旭, 李响, 王晓鹏. 高超声速滑翔飞行器解析协同再入制导[J]. 宇航学报202344(5): 731-742.
  LIU X, LI X, WANG X P. Analytical cooperative entry guidance for hypersonic glide vehicles[J]. Journal of Astronautics202344(5): 731-742 (in Chinese).
21 YU W B, CHEN W C, JIANG Z G, et al. Analytical entry guidance for coordinated flight with multiple no-fly-zone constraints[J]. Aerospace Science and Technology201984: 273-290.
22 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报201839(5): 321958.
  FANG K, ZHANG Q Z, NI K, et al. Time-coordinated entry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica201839(5): 321958 (in Chinese).
23 张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报202142(7): 1400-1411.
  ZHANG W Q, YU W B, LI J L, et al. Cooperative entry guidance for intelligent lateral maneuver of hypersonic vehicle based on downrange analytical solution[J]. Acta Armamentarii202142(7): 1400-1411 (in Chinese).
24 方科, 张庆振, 倪昆, 等. 飞行时间约束下的再入制导律[J]. 哈尔滨工业大学学报201951(10): 90-97.
  FANG K, ZHANG Q Z, NI K, et al. Entry guidance law with flight time constraint[J]. Journal of Harbin Institute of Technology201951(10): 90-97 (in Chinese).
25 黄汉斌, 梁禄扬, 杨业. 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报201839(12): 322558.
  HUANG H B, LIANG L Y, YANG Y. Entry trajectory planning and guidance method based on inverse drag acceleration[J]. Acta Aeronautica et Astronautica Sinica201839(12): 322558 (in Chinese).
26 辜青萍. 拐点和一元三次方程的求根公式[J]. 江汉大学学报200219(1): 28-31.
  GU Q P. Inflection point and the formula of extracting roots on cubic equation[J]. Journal of Jianghan University200219(1): 28-31 (in Chinese).
27 LIANG Z X, REN Z, LI Q D, et al. Decoupled three-dimensional entry trajectory planning based on maneuver coefficient[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2017231(7): 1281-1292.
28 张远龙. 基于三维剖面的滑翔飞行器弹道规划与制导方法研究[D]. 长沙: 国防科技大学, 2018.
  ZHANG Y L. Research on entry trajectory generation for hypersonic glide vehicles based on three-dimensional profile[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
29 PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment guide[R]. Albuqerque: Schafer Corporation for AFRL and AFSPC, 2003.
Outlines

/