ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Key technologies in collaborative airframe⁃engine design for high performance fighters
Received date: 2023-12-13
Revised date: 2023-12-25
Accepted date: 2024-01-16
Online published: 2024-01-17
The future operational environment imposes higher and more comprehensive requirements for the performance of fighters, calling for deeper integration between fighter airframe and engine and closer collaborative design during fighter research and development. Building on theories and practices for optimum airframe-engine integration in fighter design in the past decades, this paper proposes a collaborative airframe-engine design concept. Through an analysis of the combat requirements of Penetrating Counter Air (PCA) and other operational concepts, this paper then presents the essential capabilities of high performance fighters and looks into the requirements of future-oriented collaborative airframe-engine design. The key technologies concerning flight performance, stealth characteristics, flight control and aircraft energy are discussed, and the possible implementation approaches and suggestions for design and research are also provided.
Key words: fighter; engine; collaborative design; performance; stealth; flight control; energy
Haifeng WANG . Key technologies in collaborative airframe⁃engine design for high performance fighters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529978 -529978 . DOI: 10.7527/S1000-6893.2024.29978
1 | SUTLIFF D. V/STOL airframe/propulsion integration problem areas[C]∥ ASME 1973 International Gas Turbine Conference and Products Show. New York: American Society of Mechanical Engineers. 1973. |
2 | MACE J, DOANE P. Integrated air vehicle/propulsion technology for a multirole fighter—A MCAIR perspective[C]∥ Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
3 | SANGHI V, KUMAR S K, SUNDARARAJAN V, et al. Engine-airframe integration during conceptual design for military application[J]. Journal of Aircraft, 1998, 35(3): 380-386. |
4 | O’ROURKE R. Renewed great power competition: Implications for defense—Issues for congress: R43838[R]. Washington, D.C.: Congressional Research Service, 2021. |
5 | DUNCAN J S. Pilot’s handbook of aeronautical knowledge: FAA-H-8083-25B[R]. Oklahoma: Airman Testing Standards Branch, Federal Aviation Administration, United States Department of Transportation, 2016. |
6 | PIERSON R K. The use of the wind channel for performance prediction[J]. The Journal of the Royal Aeronautical Society, 1928, 32(206): 96-126. |
7 | A.A.F. Erection and maintenance instructions for army models P-51D-5,-10,-15,-20,-25,P-51K-1,-5,-10,-15 British model Mustang IV airplanes: AN 01-60JE-2[R]. Washington, D.C.: A.A.F, 1944. |
8 | NICHOLSON L F. Engine-airframe integration[J]. The Journal of the Royal Aeronautical Society, 1957, 61(563): 711-726. |
9 | BUCKNELL R. STOVL engine/airframe integration[C]∥ Proceedings of the 23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
10 | FOZARD J. The jet V/STOL Harrier—An evolutionary revolution in tactical air power[M]. Surrey: British Aerospace Aircraft Group Kingston-Brough Division, 1978: 1-8. |
11 | HIRSCHBERG M J. Soviet V/STOL aircraft: The struggle for a shipborne combat capability[M]. Reston: AIAA, 1997. |
12 | ROSS J. An integrated approach to V/STOL propulsion system development and testing[C]∥ Proceedings of the 2nd Aerodynamic Testing Conference. Reston: AIAA, 1966. |
13 | AGNEW J W. Correlation of F-15 flight and wind tunnel test control effectiveness[C]∥ North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development. Agard Conference Proceedings of Aerodynamic Characteristics of Controls. Pozzuoli: Italian Air Force Academy,1979. |
14 | 高为民. 飞发一体化设计的关键技术[J]. 航空动力, 2018(2): 58-62. |
GAO W M. Key technology for aircraft/engine integration design[J]. Aerospace Power, 2018(2): 58-62 (in Chinese). | |
15 | RICHEY G K, SURBER L E, BERRIER B L. Airframe-propulsion integration for fighter aircraft[C]∥ Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
16 | ARONSTEIN D C, HIRSCHBERG M J, PICCIRILLO A C. Advanced tactical fighter to F-22 raptor: Origins of the 21st century air dominance fighter[M]. Reston: American Institute of Aeronautics and AIAA, 1998 |
17 | HERRICK P. Fighter aircraft/propulsion integration[C]∥ Proceedings of the Aircraft Systems, Design and Technology Meeting. Reston: AIAA, 1986. |
18 | KITOWSKI J. Fighter airframe/propulsion integration—A General Dynamics perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
19 | MACE J, NYBERG G. Fighter airframe/propulsion integration—A McDonnell Aircraft perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
20 | POWERS S, ROBINSON M. Fighter airframe/propulsion integration—A rockwell perspective[C]∥ Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
21 | LISTON G, SMALL L. Fighter airframe/propulsion integration—A Wright Laboratory perspective[C]∥ AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
22 | 罗志会, 王小平, 黄纯洲. 新一代飞机自适应动力与热管理系统研究[J]. 航空科学技术, 2012, 23(5): 38-41. |
LUO Z H, WANG X P, HUANG C Z. Adaptive power and thermal management system for new generation aircraft[J]. Aeronautical Science & Technology, 2012, 23(5): 38-41 (in Chinese). | |
23 | GRYNKEWICH A. An operational imperative: The future of air superiority[C]∥ Mitchell Institute Policy Papers. 2017. |
24 | MITCHELL W. Winged defense: The development and possibilities of modern air power-economic and military[M]. Tuscaloosa: University of Alabama Press, 2009. |
25 | TIRPAK J A. Piecing together the NGAD puzzle[J]. Air & Space Forces Magazine, 2022, 4: 1-8. |
26 | SELIGMAN L. Meet Boeing’s latest next-gen fighter concept[EB/OL].[2024-01-11]. . |
27 | Grumman Northrop. Just wait[EB/OL]. (2016-02-08)[2024-01-11]. . |
28 | Norris Guy. Skunk works unveils updated next-gen fighter concept[EB/OL]. (2017-06-06)[2024-01-11]. . |
29 | RAYMER D. Aircraft design: a conceptual approach, sixth edition[M]. Washington, D.C.: AIAA, Inc., 2018. |
30 | 日本経済新聞社. 次期戦闘機のF22改良版、日本が過半生産[EB/OL]. (2018-8-23)[2024-01-11]. . |
31 | Sugiyama Kentaro. MDAO for conceptual aircraft design at northrop grumman[EB/OL]. (2019-02-21)[2024-01-11]. . |
32 | ORME J S, CONNERS T R. Supersonic flight test results of a performance seeking control algorithm on a NASA F-15 aircraft[C]∥ 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 1994. |
33 | 晏武英, 谭米. 美国自适应发动机技术转化应用前瞻[J]. 航空动力, 2021(6): 18-22. |
YAN W Y, TAN M. Foresight of U.S. Adaptive engine technology transformation[J]. Aerospace Power, 2021(6): 18-22 (in Chinese). | |
34 | 亚历山大·尼古拉耶维奇·达维坚科, 米哈伊尔·尤里耶维奇·斯特雷勒茨, 弗拉迪米尔·亚历山德罗维奇·鲁尼舍夫, 等. 可调整的超音速进气道: CN103748337B[P]. 2016-08-17. |
NIKOLAEVICH A, YURIEVICH S M, ALEKSANDR- OVICH R V, et al. Adjustable supersonic air inlet: CN103748337B[P]. 2016-08-17 (in Chinese). | |
35 | 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. |
FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). | |
36 | 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017. |
JIA L Y. Research on variable cycle engine control schedule design[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
37 | 孙鹏,周莉,王占学,等 . 双涵道S 弯喷管内/ 外流场的温度分布研究[J]. 西北工业大学学报, 2021, 39 (6):1331-1339 |
SUN, ZHOU L, WANG Z X,et al . Temperature distributions of internal flow and external jet fields of double serpentine convergent nozzle for turbofan[J]. Journal of Northwestern Polytechnical University, 2021, 39 (6): 1331-1339 (in Chinese). | |
38 | 孙鹏, 周莉, 王占学, 等. 双S弯喷管的流固耦合特性研究[J]. 推进技术, 2022, 43(10): 158-167. |
SUN P, ZHOU L, WANG Z X, et al. Fluid-structure interaction characteristic of double serpentine nozzle[J]. Journal of Propulsion Technology, 2022, 43(10): 158-167 (in Chinese). | |
39 | Марчуков Евгений Ювенальевич,Привалов Виталий Николаевич,Чепкин Виктор Михайлович. ПЛОСКОЕ СОПЛО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ: RU 238376 C1[P] (in Russian). |
40 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design [M]. 2nd ed.Reston: AIAA, 2002. |
41 | 王浩. 低红外特征涡扇发动机总体设计若干问题研究[D]. 南京: 南京航空航天大学,2020. |
WANG H. Research on some problems of overall design of low infrared characteristic turbofan engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
42 | FlightGlobal. F-22 Raptor in action at Farnborough Air Show[EB/OL]. (2010-7-20)[2024-01-11]. . |
43 | 斯仁. 飞行器红外隐身设计评估软件及二元喷管隐身技术研究[D]. 南京: 南京航空航天大学,2015. |
SI R. Research on infrared stealth design evaluation software for aircraft and dual nozzle stealth technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
44 | MAIER M S, GAMBLE E J, WILSON J W, et al. Nacelle air pump for vector nozzles for aircraft: US5593112[P]. 1997-01-14. |
45 | 有人驾驶飞机(固定翼)飞行品质: [S].2004. |
Piloted aircraft (fixed wing) flight quality: [S]. 2004. | |
46 | NGUYEN L T, OGBURN MARILYN E, GILBERT WILLIAM P, et al. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability: NASA-79-TP-1538[R]. Hampton: National Aeronautics and Space Administration Scientific and Technical Information Branch, 1979. |
47 | 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 239. |
HAN J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008: 239 (in Chinese). | |
48 | MASHINA B. Thrust vectoring nozzles of lockheed martin F-22 raptor[EB/OL]. (2022-8-27)[2024-01-11]. . |
49 | 肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8-15. |
XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8-15 (in Chinese). | |
50 | 顾瑞. 新型双喉道气动矢量喷管机理与关键技术研究[D]. 南京: 南京航空航天大学, 2013. |
GU R. Research on the key technology of new dual throat fluidic vectoring thrust nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
51 | 徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67-70. |
XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67-70 (in Chinese). | |
52 | STEVEN M. Integrated Vehicle Energy Technology (INVENT) overview[C]∥ IEEE 2012 Annual Meeting. Cincinnati: Air Force Research Laboratory, 2012. |
53 | 付盛杰. F-22“猛禽” 典型第四代战斗机[M]. 北京: 蓝天出版社, 1999. |
FU S J. F-22 Raptor is a typical fourth-generation fighter[M]. Beijing: Blue Sky Press, 1999 (in Chinese). | |
54 | 罗志会, 李胜全, 黄纯洲. 下一代飞机热管理技术的研究热点[J]. 航空科学技术, 2015, 26(8): 6-12. |
LUO Z H, LI S Q, HUANG C Z. Highlights of next generation aircraft thermal management technology[J]. Aeronautical Science & Technology, 2015, 26(8): 6-12 (in Chinese). |
/
〈 |
|
〉 |