ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Acoustic fatigue design method for fighter inlet structure
Received date: 2023-09-18
Revised date: 2023-10-09
Accepted date: 2023-12-22
Online published: 2024-01-17
Supported by
National Level Project
The thin-walled structure of an advanced fighter inlet experiences severe vibration and noise loads due to the internal flow field separation in the S-shaped inlet, resulting in limited fatigue life of the inlet skin and supporting structure and thus increased maintenance cost. Therefore, the S-shaped inlet design against acoustic fatigue is a key challenge in the structural design of next-generation fighters. This study establishes a design method to combat inlet acoustic fatigue based on an analysis of the aerodynamic noise prediction method, the acoustic-vibration coupling analysis method, the fast finite element inlet modeling method, and acoustic fatigue life prediction. The proposed method is verified by experiments, with results demonstrating good agreement with the analysis results, and provides an effective technical means for the dynamics strength design of fighter inlet structures.
Binjie MOU , Jinsong JIANG , Kun YANG , Huanbing FU , Dehong MENG , Wei JIN . Acoustic fatigue design method for fighter inlet structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(14) : 229603 -229603 . DOI: 10.7527/S1000-6893.2023.29603
1 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011. |
2 | DELERY J M. Shock wave/turbulent boundary layer interaction and its control[J]. Progress in Aerospace Sciences, 1985, 22(4): 209-280. |
3 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
4 | 方传波, 夏智勋, 胡建新, 等. 进气道流场控制技术研究进展[J]. 导弹与航天运载技术, 2014(2): 34-38. |
FANG C B, XIA Z X, HU J X, et al. Advances in inlet flow control technology[J]. Missiles and Space Vehicles, 2014(2): 34-38 (in Chinese). | |
5 | 贾洪印, 周桂宇, 唐静, 等. 带鼓包的背负式大S弯进气道流场特性及参数影响规律[J]. 西北工业大学学报, 2019, 37(3): 572-579. |
JIA H Y, ZHOU G Y, TANG J, et al. Numerical investigation of dorsal S-shaped inlet flow characteristic and effects of related parameters[J]. Journal of Northwestern Polytechnical University, 2019, 37(3): 572-579 (in Chinese). | |
6 | 陈逖, 刘卫东, 范晓樯. 二维进气道不启动流场非定常特性的混合LES/RANS模拟[J]. 航空动力学报, 2012, 27(8): 1792-1800. |
CHEN T, LIU W D, FAN X Q. Investigation on unsteady characteristics of unstarted two-dimensional inlet flow using hybrid LES/RANS method[J]. Journal of Aerospace Power, 2012, 27(8): 1792-1800 (in Chinese). | |
7 | KNIGHT D, YAN H, PANARAS A, et al. RTO WG 10 - CFD validation for shock wave turbulent boundary layer interactions[C]∥ 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
8 | 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38(1): 120102. |
ZHANG L, LI J. Numerical simulations of supersonic base flow field based on RANS/LES approaches[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120102 (in Chinese). | |
9 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
10 | 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2): 221-230. |
XIAO Z X, FU S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Computational Physics, 2009, 26(2): 221-230 (in Chinese). | |
11 | EVERSTINE G C, HENDERSON F M. Coupled finite element/boundary element approach for fluid-structure interaction[J]. The Journal of the Acoustical Society of America, 1990, 87(5): 1938-1947. |
12 | FENG J L, ZHENG X P, WANG H T, et al. Low-frequency acoustic-structure analysis using coupled FEM-BEM method[J]. Mathematical Problems in Engineering, 2013, 2013: 583079. |
13 | 王珺, 张景绘, 宁玮. 复合环境激励下的声振耦合分析[J]. 振动与冲击, 2011, 30(2): 15-18. |
WANG J, ZHANG J H, NING W. Sound-vibration coupling analysis under combined environment[J]. Journal of Vibration and Shock, 2011, 30(2): 15-18 (in Chinese). | |
14 | 杜骊刚. 飞行器在气动噪声作用下的振动环境预示方法[J]. 装备环境工程, 2008, 5(6): 65-67, 81. |
DU L G. Vibration environment prediction method for spacecraft under pneumatic noise condition[J]. Equipment Environmental Engineering, 2008, 5(6): 65-67, 81 (in Chinese). | |
15 | 黎胜, 赵德有. 用有限元/边界元方法进行结构声辐射的模态分析[J]. 声学学报, 2001, 26(2): 174-179. |
LI S, ZHAO D Y. Modal analysis of structural acoustic radiation using FEM/BEM[J]. Acta Acustica, 2001, 26(2): 174-179 (in Chinese). | |
16 | 顾超林, 王轲. 基于功率谱密度的结构随机疲劳寿命仿真[J]. 计算机与现代化, 2010(2): 143-146. |
GU C L, WANG K. Structure random fatigue life simulation based on power spectral density[J]. Computer and Modernization, 2010(2): 143-146 (in Chinese). | |
17 | 周敏亮, 陈忠明, 邓吉宏, 等. 飞机结构振动疲劳寿命频域预估方法研究[J]. 飞机设计, 2017, 37(3): 25-30. |
ZHOU M L, CHEN Z M, DENG J H, et al. Research on vibration fatigue life frequency-domain estimation method of aircraft structure[J]. Aircraft Design, 2017, 37(3): 25-30 (in Chinese). | |
18 | 沙云东, 郭小鹏, 张军. 基于应力概率密度和功率谱密度法的随机声疲劳寿命预估方法研究[J]. 振动与冲击, 2010, 29(1): 162-165, 244. |
SHA Y D, GUO X P, ZHANG J. Random sonic fatigue life prediction based on stress probability density and power spectral density method[J]. Journal of Vibration and Shock, 2010, 29(1): 162-165, 244 (in Chinese). | |
19 | 沙云东, 郭小鹏, 廖连芳, 等. 随机声载荷作用下的复杂薄壁结构Von Mises应力概率分布研究[J]. 振动与冲击, 2011, 30(1): 137-141. |
SHA Y D, GUO X P, LIAO L F, et al. Probability distribution of Von Mises stress for complex thin-walled structures undergoing random acoustic loadings[J]. Journal of Vibration and Shock, 2011, 30(1): 137-141 (in Chinese). | |
20 | 张立新, 钟顺录, 刘小冬, 等. 先进战斗机强度设计技术发展与实践[J]. 航空学报, 2020, 41(6): 523480. |
ZHANG L X, ZHONG S L, LIU X D, et al. Development and application of strength design technology of high performance fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523480 (in Chinese). |
/
〈 |
|
〉 |