Fluid Mechanics and Flight Mechanics

Design and stabilization mechanism of non-axisymmetric fans under inlet distortion conditions

  • Junyang YU ,
  • Wenguang FU ,
  • Peng SUN ,
  • Tao ZHANG ,
  • Chunxue WANG ,
  • Wei ZHAO
Expand
  • 1.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin  300300,China
    2.Beijing Power Machinery Institute,Beijing  100074,China
E-mail: sp_hit@hotmail.com

Received date: 2023-10-16

  Revised date: 2023-11-10

  Accepted date: 2024-01-04

  Online published: 2024-01-11

Supported by

Joint Funds of the National Natural Science Foundation of China and Civil Aviation Administration of China Key Project(U2233207);Fundamental Research Funds for the Central Universities Special Project of Civil Aviation University of China(3122024038)

Abstract

Inlet distortion in propulsion systems leads to decrease in fan performance and induces aerodynamic instability, posing a potential threat to aircraft safety and drawing extensive attention in both military and civil aviation fields. To ensure reliable operation of propulsion systems under inlet distortion conditions and maintain flight safety, this study conducted research on anti-distortion fan design and stability enhancement for a small bypass ratio turbofan engine using numerical methods. Taking into account the characteristics of distortion effects, we employed a Non-Axisymmetric Stator (NAS) arrangement to mitigate the adverse effects. The research suggests that the NAS can effectively enhance fan performance under inlet distortion conditions. Compared to the prototype operating at the same mass flow rate, relative increases of 1.37%, 1.26% and 8.31% can be observed in adiabatic efficiency, total pressure ratio, and stability margin, respectively, successfully meeting the objectives of improving performance and expanding stability for the NAS fan. The NAS design directly impacts the distortion zone, effectively improving the stator incidence angle within the distorted region. It suppresses the development and migration of vortex structures in the stator passage, resulting in a significant reduction in the stator diffusion factor. Consequently, it effectively eliminates corner separation in the stator passages, leading to a more uniform circumferential distribution of stator incidence angles. This, in turn, improves the internal flow field within the fan stator and enhances the overall aerodynamic performance of the fan. Furthermore, the NAS design has the potential to improve the flow field of the inner-bypass region behind the fan, encouraging the development of a more circumferentially uniform flow field at the inner-bypass outlet. Additionally, while effectively reducing the intensity of dynamic total pressure distortion and improving flow field uniformity, the NAS design also possesses the capability to mitigate total temperature distortion.

Cite this article

Junyang YU , Wenguang FU , Peng SUN , Tao ZHANG , Chunxue WANG , Wei ZHAO . Design and stabilization mechanism of non-axisymmetric fans under inlet distortion conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 129725 -129725 . DOI: 10.7527/S1000-6893.2024.29725

References

1 李宏新, 谢业平. 从航空发动机视角看飞/发一体化问题[J]. 航空发动机201945(6): 1-8.
  LI H X, XIE Y P. Fundamental issues of aircraft/engine integration from the perspective of aeroengine[J]. Aeroengine201945(6): 1-8 (in Chinese).
2 唐杰, 鲁峰, 周文祥, 等. 进气道/发动机一体化多变量控制方法研究[J]. 推进技术202344(1): 248-257.
  TANG J, LU F, ZHOU W X, et al. Inlet/engine integrated multivariable control method[J]. Journal of Propulsion Technology202344(1): 248-257 (in Chinese).
3 郭懋. 先进概念战斗机气动性能飞发一体初步研究[D]. 南京: 南京航空航天大学, 2013.
  GUO M. Preliminary study on integrated aerodynamic characteristics of the fighter/engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
4 ASHCRAFT S, PADRON A S, PASCIONI K A, et al. Review of propulsion technologies for N+3 subsonic vehicle concepts[R]. Washington, D.C.: NASA, 2011.
5 OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences201682: 1-23.
6 YU G, LI D, ZHANG Z Y. Numerical simulation for the differences between FTN/WPN engine models aerodynamic influence on BWB300 airframe[J]. Engineering Applications of Computational Fluid Mechanics202014(1): 566-579.
7 SMITH A M O, ROBERTS H E. The jet airplane utilizing boundary layer air for propulsion[J]. Journal of the Aeronautical Sciences194714(2): 97-109.
8 MENNICKEN M, SCHOENWEITZ D, SCHNOES M, et al. Conceptual fan design for boundary layer ingestion[C]∥Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019.
9 MENNICKEN M, SCHOENWEITZ D, SCHNOES M, et al. Fan design assessment for BLI propulsion systems[J]. CEAS Aeronautical Journal202213(1): 3-19.
10 AZIZ M A, OWIS F M, ABDELRAHMAN M M. Design optimization of a transonic-fan rotor using numerical computations of the full compressible Navier-Stokes equations and simplex algorithm[J]. International Journal of Rotating Machinery20142014: 743154.
11 WERNICK A R, CHEN J P. Rotor blade design optimization for boundary layer ingesting inlet fan[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
12 LIU C Y, IHIABE D, LASKARIDIS P, et al. A preliminary method to estimate impacts of inlet flow distortion on boundary layer ingesting propulsion system design point performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014228(9): 1528-1539.
13 HORLOCK J H. The use of circumferentially varying stagger guide vanes in an axial flow pump or compressor[J]. Journal of Turbomachinery1990112(2): 294-297.
14 TAYLOR J, HYNES T. The control of non-axisymmetric flow in axial turbomachinery using circumferentially varying stator exit angles[C]∥Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York: ASME, 2014.
15 卢绪祥, 马玉鹏, 杜娟, 等. 周向畸变条件下压气机非轴对称导叶设计方法研究[J]. 推进技术202243(12): 410-418.
  LU X X, MA Y P, DU J, et al. Design method of non-axisymmetric guide vane of compressor under circumferential distortion condition[J]. Journal of Propulsion Technology202243(12): 410-418 (in Chinese).
16 ZHANG M, DU J, ZHAO H L, et al. Design optimization of non-axisymmetric vane for an axial compressor under inlet distortion[J]. Journal of Thermal Science202332(4): 1321-1334.
17 GUNN E J, HALL C A. Aerodynamics of boundary layer ingesting fans[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014.
18 GUNN E J, HALL C A. Non-axisymmetric stator design for boundary layer ingesting fans[C]∥Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
19 GODARD B, NEGULESCU C. Fan design investigation on the airbus nautilius engine integration concept[C]∥Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021.
20 LU H N, YANG Z, PAN T Y, et al. Non-uniform stator loss reduction design strategy in a transonic axial-flow compressor stage under inflow distortion[J]. Aerospace Science and Technology201992: 347-362.
21 SUN P, FU W G, WANG H, et al. Numerical research on inlet total pressure distortion in a transonic compressor with non-axisymmetric stator[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019233(2): 667-678.
22 FU W G, SUN P. Effect of three non-axisymmetric stator schemes on compressor performance with distorted inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022236(10): 2044-2056.
23 YU J Y, FU W G, WANG W J, et al. Non-axisymmetric design and flow field analysis of boundary layer ingesting fans[J]. Aerospace Science and Technology2023140: 108429.
24 傅文广, 王维佳, 孙鹏, 等. 附面层吸入条件下非轴对称静子对风扇流场影响数值研究[J]. 推进技术202445(3): 165-176.
  FU W G, WANG W J, SUN P, et al. Numerical study on effects of non-axisymmetric stator on fan flow field under boundary layer ingestion[J]. Journal of Propulsion Technology202445(3): 165-176 (in Chinese).
25 甘文彪, 周洲, 许晓平, 等. S弯进气道优化设计及分析[J]. 推进技术201435(10): 1317-1324.
  GAN W B, ZHOU Z, XU X P, et al. S-duct inlet optimal design and analysis[J]. Journal of Propulsion Technology201435(10): 1317-1324 (in Chinese).
26 宁浩, 侯安平, 张明明, 等. 畸变指数比例可调的组合插板数值模拟研究[J]. 推进技术202344(2): 49-57.
  NING H, HOU A P, ZHANG M M, et al. Numerical simulation on combinational baffle with adjustable ratio of distortion indexes[J]. Journal of Propulsion Technology202344(2): 49-57 (in Chinese).
27 周游天, 李军, 彭生红, 等. 插板进气畸变与压气机的耦合数值模拟[J]. 航空动力学报201732(3): 568-576.
  ZHOU Y T, LI J, PENG S H, et al. Numerical simulation of flat baffle inlet distortion coupled with compressor[J]. Journal of Aerospace Power201732(3): 568-576 (in Chinese).
28 张恺玲, 李思怡, 段毅, 等. 进气道流动中SST湍流模型参数的不确定度量化[J]. 航空学报202344(S2): 89-99.
  ZHANG K L, LI S Y, DUAN Y, et al. Uncertainty quantification of SST turbulence model parameters in inlet flow[J]. Acta Aeronautica et Astronautica Sinica202344(S2): 89-99 (in Chinese).
29 SUN W. Assessment of advanced RANS turbulence models for prediction of complex flows in compressors[J]. Chinese Journal of Aeronautics202336(9): 162-177.
30 杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报201435(1): 116-124.
  YANG J G, WU H. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica201435(1): 116-124 (in Chinese).
31 陈云永, 万科, 杨小贺, 等. 大涵道比风扇/增压级叶尖间隙影响研究[J]. 航空学报201738(9): 520951.
  CHEN Y Y, WAN K, YANG X H, et al. Influence of tip clearance on high-bypass-ratio fan/booster[J]. Acta Aeronautica et Astronautica Sinica201738(9): 520951 (in Chinese).
32 钟亚飞, 马宏伟, 郭君德, 等. 航空发动机进气总压畸变地面试验数据处理方法综述[J]. 航空发动机202147(1): 72-85.
  ZHONG Y F, MA H W, GUO J D, et al. Review of ground test data processing method of aeroengine inlet total pressure distortion[J]. Aeroengine202147(1): 72-85 (in Chinese).
33 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南: [S]. 北京: 国防科学技术工业委员会, 2004.
  National Defense Science Technology and Industry Commision. Guidelines for the assessment of total pressure distortion of aviation turbojets and turbofan engines: [S]. Beijing: National Defense Science Technology and Industry Commission, 2004 (in Chinese).
34 YANG Z, LU H N, PAN T Y, et al. Numerical investigation on the influences of boundary layer ingestion on tip leakage flow structures and losses in a transonic axial-flow fan[J]. Journal of Fluids Engineering2021143(11): 111207.
35 SCHOENWEITZ D, SCHNELL R. Development and evaluation of a performance estimation methodology for fans operating within non-homogeneous inflow[C]∥Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016.
36 秦勇. 合成射流控制压气机叶栅角区分离的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  QIN Y. Mechanisms of corner separation control in compressor cascades with synthetic jets[D].Harbin: Harbin Institute of Technology, 2018 (in Chinese).
37 LIEBLEIN S, BRODERICK R L, SCHWENK F C. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements[M]. Washington, D.C.: NACA, 1953.
38 LIEBLEIN S. Aerodynamic design of axial-flow compressors-Chapter Ⅵ: Experimental flow in two-dimensional cascades. NASA SP-36[R]. Washington, D.C.: NASA, 1965.
39 SANS J, BROUCKAERT J F, HIERNAUX S. Experimental and numerical investigations of the solidity effect on a linear compressor cascade[C]∥Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015.
40 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口温度畸变评定指南: [S]. 北京: 国防科学技术工业委员会, 2002
  National Defense Science Technology and Industry Commision. Guidelines for the assessment of temperature distortion of aviation turbojets and turbofan engines: [S]. Beijing: National Defense Science Technology and Industry Commission, 2002 (in Chinese).
Outlines

/