Electronics and Electrical Engineering and Control

Multi⁃objective dynamic scheduling optimization method for relay satellites based on rolling horizon strategy

  • Hengwei LI ,
  • Qizhang LUO ,
  • Yi GU ,
  • Caizhi FAN ,
  • Guohua WU
Expand
  • 1.College of Traffic and Transportation Engineering,Central South University,Changsha 410075,China
    2.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2023-10-12

  Revised date: 2023-10-28

  Accepted date: 2023-12-22

  Online published: 2024-01-11

Supported by

National Natural Science Foundation of China(62073341)

Abstract

To improve the ability of responding to emergencies in the scheduling of relay satellite system, a dynamic scheduling model is proposed based on the rolling horizon strategy in this paper, which decomposes the complex dynamic scheduling process into several static scheduling subproblems. A multi-objective optimization algorithm is designed to solve the subproblems according to the demand for dynamic scheduling of the relay satellite. Firstly, a dynamic scheduling model for the relay satellite is constructed to obtain the maximum task completion rate and the minimum adjustment range of scheduling scheme. Then, based on dynamic scheduling characteristics, a dynamic task scheduling method is proposed. The method adopts a hybrid rescheduling mechanism based on cycle and event-driven, divides the scheduling process into scheduling intervals, and uses a multi-objective evolutionary algorithm based on adaptive neighborhood search to schedule the window tasks in each interval. To verify the effectiveness of the proposed dynamic scheduling model and algorithm, a large number of simulation experiments are carried out. The experimental results prove the superiority of the proposed method in solving the dynamic scheduling problem of relay satellite. Compared with the cutting-edge multi-objective optimization methods of NSGA-Ⅱ, MDSA-NSGA-Ⅱ, and MODJA, the algorithm designed in this paper can generate higher quality solutions.

Cite this article

Hengwei LI , Qizhang LUO , Yi GU , Caizhi FAN , Guohua WU . Multi⁃objective dynamic scheduling optimization method for relay satellites based on rolling horizon strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 329706 -329706 . DOI: 10.7527/S1000-6893.2023.29706

References

1 BRANDEL D L, WATSON W A, WEINBERG A. NASA’s advanced tracking and data relay satellite system for the years 2000 and beyond[J]. Proceedings of the IEEE199078(7): 1141-1151.
2 HORAN S. Nontracking antenna performance for inertially controlled spacecraft using TDRSS[J]. IEEE Transactions on Aerospace and Electronic Systems200339(4): 1263-1269.
3 WANG J J, JIANG C X, ZHANG H J, et al. Aggressive congestion control mechanism for space systems[J]. IEEE Aerospace and Electronic Systems Magazine201631(3): 28-33.
4 WANG X Y, ZHAO S H, LI Y J, et al. An enhanced MAC protocol based on the IEEE 802.11 for data relay satellite systems[J]. International Journal of Satellite Communications and Networking202038(3): 272-283.
5 WU G H, MA M H, ZHU J H, et al. Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks[J]. Journal of Systems Engineering and Electronics201223(5): 723-733.
6 PECORELLA T, RONGA L S, CHITI F, et al. Emergency satellite communications: research and standardization activities[J]. IEEE Communications Magazine201553(5): 170-177.
7 ZHAI X J, NIU X N, TANG H, et al. Robust satellite scheduling approach for dynamic emergency tasks[J]. Mathematical Problems in Engineering20152015: 482923.
8 顾中舜. 中继卫星动态调度问题建模及优化技术研究[D]. 长沙: 国防科学技术大学, 2008.
  GU Z S. Research on the relay satellite dynamic scheduling problem modeling and optimizational technology[D].Changsha: National University of Defense Technology, 2008 (in Chinese).
9 ROJANASOONTHON S, BARD J F, REDDY S D. Algorithms for parallel machine scheduling: A case study of the tracking and data relay satellite system[J]. Journal of the Operational Research Society200354(8): 806-821.
10 ROJANASOONTHON S, BARD J. A GRASP for parallel machine scheduling with time windows[J]. INFORMS Journal on Computing200517(1): 32-51.
11 ZHUANG S F, YIN Z D, WU Z L, et al. The relay satellite scheduling based on artificial bee colony algorithm[C]∥ 2014 International Symposium on Wireless Personal Multimedia Communications (WPMC). Piscataway: IEEE Press, 2014: 635-640.
12 WANG L, JIANG C X, KUANG L L, et al. Mission scheduling in space network with antenna dynamic setup times[J]. IEEE Transactions on Aerospace and Electronic Systems201955(1): 31-45.
13 CHEN X J, LI X M, WANG X W, et al. Task scheduling method for data relay satellite network considering breakpoint transmission[J]. IEEE Transactions on Vehicular Technology202170(1): 844-857.
14 郭超, 熊伟, 郝利云. 基于双层优先级的中继卫星系统任务调度算法[J]. 计算机应用研究201835(5): 1506-1510.
  GUO C, XIONG W, HAO L Y. Relay satellite system task scheduling algorithm based on double-layer priority[J]. Application Research of Computers201835(5): 1506-1510 (in Chinese).
15 WU G H, LUO Q Z, ZHU Y Q, et al. Flexible task scheduling in data relay satellite networks[J]. IEEE Transactions on Aerospace and Electronic Systems202258(2): 1055-1068.
16 LI J X, WU G H, LIAO T J, et al. Task scheduling under a novel framework for data relay satellite network via deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology202372(5): 6654-6668.
17 DAI C Q, LI C, FU S, et al. Dynamic scheduling for emergency tasks in space data relay network[J]. IEEE Transactions on Vehicular Technology202170(1): 795-807.
18 DENG B Y, JIANG C X, KUANG L L, et al. Two-phase task scheduling in data relay satellite systems[J]. IEEE Transactions on Vehicular Technology201867(2): 1782-1793.
19 HE L J, LI J D, SHENG M, et al. Dynamic scheduling of hybrid tasks with time windows in data relay satellite networks[J]. IEEE Transactions on Vehicular Technology201968(5): 4989-5004.
20 LIN X H, WANG L H, XU H, et al. Event-trigger rolling horizon optimization for congestion management considering peer-to-peer energy trading among microgrids[J]. International Journal of Electrical Power & Energy Systems2023147(5): 108838.
21 JIA Y J, WANG C J, WANG L M. A rolling horizon procedure for dynamic pickup and delivery problem with time windows[C]∥ 2009 IEEE International Conference on Automation and Logistics. Piscataway: IEEE Press, 2009: 2087-2091.
22 QIU D S, HE C, LIU J, et al. A dynamic scheduling method of earth-observing satellites by employing rolling horizon strategy[J]. The Scientific World Journal2013(3): 304047.
23 庄树峰. 跟踪与数据中继卫星系统资源调度技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
  ZHUANG S F. Research on resource scheduling technology of tracking and data relay satellite system[D].Harbin: Harbin Institute of Technology, 2017 (in Chinese).
24 陈英武, 方炎申, 顾中舜. 中继卫星单址链路调度模型与算法研究[J]. 中国空间科学技术200727(2): 52-58.
  CHEN Y W, FANG Y S, GU Z S. Algorithms for the single access link scheduling model of tracking and data relay satellite system[J]. Chinese Space Science and Technology200727(2): 52-58 (in Chinese).
25 DU J, JIANG C X, GUO Q, et al. Cooperative earth observation through complex space information networks[J]. IEEE Wireless Communications201623(2): 136-144.
26 CHAND S, HSU V N, Forecast SETHI S., solution, and rolling horizons in operations management problems : A classified bibliography[J]. Manufacturing & Service Operations Management20024(1): 25-43.
27 DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]∥ Proceedings of the 6th International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2000: 849-858.
28 YU W W, ZHANG L, GE N. An adaptive multiobjective evolutionary algorithm for dynamic multiobjective flexible scheduling problem[J]. International Journal of Intelligent Systems202237(12): 12335-12366.
29 CALDEIRA R H, GNANAVELBABU A. A Pareto based discrete Jaya algorithm for multi-objective flexible job shop scheduling problem[J]. Expert Systems with Applications2021170: 114567.
30 李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报201940(11): 323233.
  LI X M, CHEN X J, WU G H, et al. Scheduling model and heuristic algorithm for tracking and data relay satellite considering breakpoint transmission[J]. Acta Aeronautica et Astronautica Sinica201940(11): 323233 (in Chinese).
31 王志淋, 李新明. 跟踪与数据中继卫星系统资源调度优化问题[J]. 中国空间科学技术201535(1): 36-42.
  WANG Z L, LI X M. Resources scheduling optimization problem of the TDRSS[J]. Chinese Space Science and Technology201535(1): 36-42 (in Chinese).
32 孙刚, 彭双, 陈浩, 等. 面向测控数传资源一体化场景的卫星地面站资源多目标优化方法[J]. 航空学报202243(9): 326114.
  SUN G, PENG S, CHEN H, et al. Multi-objective optimization method oriented to integrated scenario of TT & C resources and data transmission resources[J]. Acta Aeronautica et Astronautica Sinica202243(9): 326114 (in Chinese).
33 孙刚, 陈浩, 彭双, 等. 一种基于偏好MOEA的卫星地面站资源多目标优化算法[J]. 航空学报202142(4): 524475.
  SUN G, CHEN H, PENG S, et al. Multi-objective optimization algorithm for satellite range scheduling based on preference MOEA[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524475 (in Chinese).
34 龙运军, 李恒伟, 尹谦, 等. 基于多目标优化的中继卫星重调度方法[J]. 无线电工程202252(7): 1180-1189.
  LONG Y J, LI H W, YIN Q, et al. Relay satellite rescheduling method based on multi-objective optimization[J]. Radio Engineering202252(7): 1180-1189 (in Chinese).
35 LIU R Z, SHENG M, XU C, et al. Antenna slewing time aware mission scheduling in space networks[J]. IEEE Communications Letters201721(3): 516-519.
36 张彦, 孙占军, 李剑. 中继卫星动态调度问题研究[J]. 系统仿真学报201123(7): 1464-1468.
  ZHANG Y, SUN Z J, LI J. Study of TDRS dynamic scheduling problem[J]. Journal of System Simulation201123(7): 1464-1468 (in Chinese).
37 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报202344(12): 327759.
  WU G H, WANG T Y. Large-scale constellation TT & C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica202344(12): 327759 (in Chinese).
38 SHANG K, ISHIBUCHI H. A new hypervolume-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation202024(5): 839-852.
39 ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation20008(2): 173-195.
Outlines

/