Uncertainties in Aerothermodynamics of Aero-engine

Effect of data-driven twist deviation on compressor performance

  • Tianyuan JI ,
  • Wuli CHU ,
  • Haoguang ZHANG ,
  • Zhengtao GUO ,
  • Dejun MENG
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an  710129,China
    2.AECC Shenyang Engine Research Institute,Shenyang  110015,China
E-mail: wlchu@nwpu.edu.cn

Received date: 2023-12-05

  Revised date: 2023-12-20

  Accepted date: 2024-01-02

  Online published: 2024-01-04

Supported by

National Science and Technology Major Project (J2019-Ⅰ-0011);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University

Abstract

To investigate the impact of introducing changes in the dimensionality and correlation of twist deviation on the quantitative results of compressor performance, we adopt a data-driven non-intrusive polynomial chaos method to quantitatively study the uncertainty effect of blade twist deviation on the aerodynamic performance of a single-stage axial subsonic compressor based on the measurement results of twist deviation of a certain compressor rotor blade, and conduct sensitivity analysis. The research results indicate that the standard deviation of compressor performance under various operating conditions decreases with the increase of the twist deviation dimension introduced. Through quantitative comparison, it was observed that considering twist deviations of the blade tip and root sections is sufficient to ensure the convergence of compressor performance standard deviation and performance probability distribution form. However, in sensitivity analysis, it was revealed that more dimensions of twist deviation introduced can lead to more accurate identification of the most sensitive twist deviation region in compressor performance. As the correlation between twist deviations on various sections gradually strengthens, the fluctuation degree of compressor performance under different operating conditions also increases. Though the difference between the first-order sensitivity indices of compressor performance to twist deviations gradually decreases, the ranking of compressor performance sensitivity to twist deviations on various sections remains unchanged.

Cite this article

Tianyuan JI , Wuli CHU , Haoguang ZHANG , Zhengtao GUO , Dejun MENG . Effect of data-driven twist deviation on compressor performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 629938 -629938 . DOI: 10.7527/S1000-6893.2023.29938

References

1 BERGNER J, KABLITZ S, HENNECKE D K, et al. Influence of sweep on the 3D shock structure in an axial transonic compressor[C]∥Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2008: 343-352.
2 李萍. 叶片加工误差及数据传递对压气机气动性能的影响[D]. 西安: 西北工业大学, 2015: 1-8.
  LI P. Effect of blade machining error and data transfer on compressor aerodynamic performance[D]. Xi’an: Northwestern Polytechnical University, 2015: 1-8 (in Chinese).
3 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报201738(3): 498-503.
  LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics201738(3): 498-503 (in Chinese).
4 WU C Y. Arbitrary surface flank milling and flank SAM in the design and manufacturing of jet engine fan and compressor airfoils[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 21-30.
5 但玥, 王浩浩, 高丽敏, 等. 扭转度误差对跨声速压气机叶片性能的影响[J]. 推进技术202344(10): 89-96.
  DAN Y, WANG H H, GAO L M, et al. Effects of twist angle error on transonic compressor blades performance[J]. Journal of Propulsion Technology202344(10): 89-96 (in Chinese).
6 BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power197698(1): 29-36.
7 张国臣, 刘波, 曹志远. 静子叶栅安装角异常非定常流场数值研究[J]. 推进技术201435(2): 187-194.
  ZHANG G C, LIU B, CAO Z Y. Numerical analysis of unsteady flow for stagger angle of stator cascade adjusting abnormally[J]. Journal of Propulsion Technology201435(2): 187-194 (in Chinese).
8 张国臣, 刘波, 杨小东, 等. 叶栅安装角异常的非定常流场数值模拟[J]. 航空动力学报201429(10): 2450-2456.
  ZHANG G C, LIU B, YANG X D, et al. Numerical simulation of unsteady flow field on abnormal stagger angle of cascade[J]. Journal of Aerospace Power201429(10): 2450-2456 (in Chinese).
9 叶学民, 李新颖, 李春曦. 第一级叶轮单动叶安装角异常对动叶可调轴流风机性能的影响[J]. 中国电机工程学报201434(14): 2297-2306.
  YE X M, LI X Y, LI C X. Effect of the first-stage impeller with single abnormal blade on the performance of a variable pitch axial fan[J]. Proceedings of the CSEE201434(14): 2297-2306 (in Chinese).
10 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术201738(3): 525-531.
  GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology201738(3): 525-531 (in Chinese).
11 DALBANJAN M S, SARANGI N. Sensitivity study of stagger angle on the aerodynamic performance of transonic axial flow compressors[C]∥Proceedings of the National Aerospace Propulsion Conference. Singapore: Springer, 2023: 3-14.
12 LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[C]∥Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 617-628.
13 李玉, 楚武利, 姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报202357(4): 49-59.
  LI Y, CHU W L, JI T Y. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University202357(4): 49-59 (in Chinese).
14 GUO Z T, CHU W L, ZHANG H G. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology2022129: 107802.
15 LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power2012134(11): 112601.
16 李晓丽, 楚武利. 安装角变化对多级轴流压缩机性能影响的分析[J]. 风机技术200850(5): 27-29.
  LI X L, CHU W L. Analysis on the influence of variable installation angle on performance of multistage axial-flow compressor[J]. Compressor, Blower & Fan Technology, 200850(5): 27-29 (in Chinese).
17 LANGE A, VOIGT M, VOGELER K, et al. Impact of manufacturing variability and nonaxisymmetry on high-pressure compressor stage performance[J]. Journal of Engineering for Gas Turbines and Power2012134(3): 032504.
18 姬田园, 楚武利, 张皓光, 等. 真实安装角偏差影响压气机性能的不确定性量化[J]. 航空动力学报202439(10): 20220858.
  JI T Y, CHU W L, ZHANG H G, et al. Uncertainty quantification of real stagger angle deviation affecting compressor performance[J]. Journal of Aerospace Power202439(10): 20220858 (in Chinese).
19 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报202142(2): 423796.
  LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica202142(2): 423796 (in Chinese).
20 GUO Z T, CHU W L, ZHANG H G. Uncertainty analysis of global and local performance impact of inflow and geometric uncertainties using sparse grid-based non-intrusive polynomial chaos[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2022236(7): 1239-1256.
21 姬田园, 楚武利, 戴雨晨, 等. 叶顶间隙偏差对叶片气动性能影响的不确定性研究[J]. 推进技术202243(10): 134-146.
  JI T Y, CHU W L, DAI Y C, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology202243(10): 134-146 (in Chinese).
22 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报201854(2): 216-224.
  ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering201854(2): 216-224 (in Chinese).
23 WANG W, CHU W L, ZHANG H G, et al. Experimental and numerical study of tip injection in a subsonic axial flow compressor[J]. Chinese Journal of Aeronautics201730(3): 907-917.
24 CHI Z D, CHU W L, ZHANG Z Y, et al. Research on the stability enhancement mechanism of multi-parameter interaction of casing treatment in an axial compressor rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2022236(12): 2405-2419.
25 CHI Z D, CHU W L, ZHANG H G, et al. Stall margin evaluation and data mining based multi-objective optimization design of casing treatment for an axial compressor rotor[J]. Physics of Fluids202335(8): 086117.
26 CHI Z D, CHU W L, ZHANG H G, et al. Unsteady effects of casing treatment on tip flow structures in a subsonic compressor rotor[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022.
27 ZHANG H G, LIU W H, WANG E H, et al. Mechanism investigation of enhancing the stability of an axial flow rotor by blade angle slots[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(13): 4750-4764.
28 ZHANG H G, LI Q, DONG F Y, et al. Mechanism of affecting the performance and stability of an axial flow compressor with inlet distortion[J]. Journal of Thermal Science202130(4): 1406-1420.
29 JI T Y, CHU W L, LIANG C Yet al. Uncertainty quantification on the influence of blade thickness deviation at different rotational speeds based on flow dissipation analysis[J]. Physics of Fluids202335(6): 066126.
30 SCHLüTER L, VOIGT P, VOIGT M, et al. The validation of a parametric leading edge model for probabilistic CFD analyses of post-service compressor airfoils[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022.
31 LIU B J, LIU J X, YU X J, et al. A novel decomposition method for manufacture variations and the sensitivity analysis on compressor blades[J]. Aerospace20229(10): 542.
32 WANG J Y, WANG B T, YANG H L, et al. Compressor geometric uncertainty quantification under conditions from near choke to near stall[J]. Chinese Journal of Aeronautics202336(3): 16-29.
33 姬田园, 楚武利, 郭正涛, 等. 一种叶片截面几何特征参数的获取方法: CN115168986A[P]. 2022-10-11.
  JI T Y, CHU W L, GUO Z T, et al. A method for obtaining geometric feature parameters of blade section: CN115168986A[P]. 2022-10-11 (in Chinese).
34 ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics195627(3): 832-837.
35 PROTS A, SCHLüTER L, VOIGT M, et al. Impact of epistemic uncertainty on performance parameters of compressor blades[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022.
36 赵轲, 高正红, 黄江涛, 等. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报201446(1): 10-19.
  ZHAO K, GAO Z H, HUANG J T, et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics201446(1): 10-19 (in Chinese).
37 GOPINATHRAO N P, BAGSHAW D, MABILAT C, et al. Non-deterministic CFD simulation of a transonic compressor rotor[C]∥Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2010: 1125-1134.
38 CHU W L, JI T Y, CHEN X Y, et al. Mechanism analysis and uncertainty quantification of blade thickness deviation on rotor performance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2023237(6): 1188-1202.
39 WIENER N. The homogeneous chaos[J]. American Journal of Mathematics193860(4): 897-936.
40 XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology201990: 127-139.
41 XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics2003187(1): 137-167.
42 AHLFELD R, BELKOUCHI B, MONTOMOLI F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos[J]. Journal of Computational Physics2016320: 1-16.
43 王浩浩, 高丽敏, 杨光, 等. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报202344(17): 128169.
  WANG H H, GAO L M, YANG G, et al. Robust data-driven uncertainty quantification method and its application in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica202344(17): 128169 (in Chinese).
44 GUO Z T, CHU W L. Stochastic aerodynamic analysis for compressor blades with manufacturing variability based on a mathematical dimensionality reduction method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science2022236(10): 5719-5735.
45 OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety2012106: 179-190.
46 ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Stochastic response surface methods (SRSMs) for uncertainty propagation: Application to environmental and biological systems[J]. Risk Analysis199818(3): 351-363.
47 MARCELLO ANILE A, SPINELLA S, RINAUDO S. Stochastic response surface method and tolerance analysis in microelectronics[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering200322(2): 314-327.
48 SOBOL’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation200155(1-3): 271-280.
49 MARA T A, TARANTOLA S. Variance-based sensitivity indices for models with dependent inputs[J]. Reliability Engineering & System Safety2012107: 115-121.
Outlines

/