ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement
Received date: 2023-11-27
Revised date: 2023-12-13
Accepted date: 2023-12-28
Online published: 2024-01-04
Supported by
the Civil Aviation University of China Central University Education and Teaching Reform Special Fund(E2024045)
In response to the challenge of large volumes of aviation equipment failure data and the inefficiency of traditional fault diagnosis methods, we employ the knowledge graph technology to build a high-performance graph database. This database replaces the conventional relational databases used in civilian aircraft to enhance the efficiency of fault diagnosis decision-making. Additionally, we optimize and improve the knowledge extraction model by integrating an attention mechanism and the Bidirectional Gated Recurrent Unit (BiGRU). Initially, we designed the ontology of the knowledge graph based on expert experience, clearly defining entities and relationship types within the knowledge graph. Subsequently, we trained the BiGRU-Attention optimized knowledge extraction model using fault-text corpora annotated with BIO tags to enhance the efficiency of extracting entities and relationships from unstructured texts. Comparisons with classical knowledge extraction models reveal that the BiGRU-Attention improved model demonstrates superior recognition performance. Ultimately, we utilize the extracted entities and relationships to construct a knowledge graph for diagnosing faults in aviation equipment. This knowledge graph facilitates more accurate fault diagnosis for maintenance personnel involved in aviation equipment troubleshooting.
Yonggang CHEN , Kangni LIU , Shuai WANG . Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 229916 -229916 . DOI: 10.7527/S1000-6893.2024.29916
1 | 中国民用航空局. 民航行业发展统计公报[R]. 北京: 中国民用航空局, 2010-2022. |
Civil Aviation Administration of China. The Bluebook on the Development of China’s Air Transport Industry[R]. Beijing: Civil Aviation Administration of China, 2010-2022 (in Chinese). | |
2 | 贾宝惠, 姜番, 王玉鑫, 等. 基于民机维修文本数据的故障诊断方法[J]. 航空学报, 2023, 44(5): 326598. |
JIA B H, JIANG F, WANG Y X, et al. Fault diagnosis method based on civil aircraft maintenance text data[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 326598 (in Chinese). | |
3 | 徐静. 基于自适应滑模观测器的DC-DC变换器故障诊断方法[D]. 吉林: 东北电力大学, 2021. |
XU J. DC-DC converter fault diagnosis method using adaptive sliding mode observer[D].Jilin: Northeast Dianli University, 2021 (in Chinese). | |
4 | 赵万里, 郭迎清, 徐柯杰, 等. 航空发动机多电分布式控制系统故障诊断与容错关键技术综述[J]. 航空学报, 2023, 44(10): 027519. |
ZHAO W L, GUO Y Q, XU K J, et al. Review of key technologies for fault diagnosis and accommodation for multi-electric distributed engine control system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 027519 (in Chinese). | |
5 | 李耀华, 王星州. 飞机液压系统故障诊断[J]. 计算机工程与应用, 2019, 55(5): 232-236, 264. |
LI Y H, WANG X Z. Fault diagnosis of aircraft hydraulic system[J]. Computer Engineering and Applications, 2019, 55(5): 232-236, 264 (in Chinese). | |
6 | 王雪飞, 李青, 冯力. 基于模型和故障树的飞机故障诊断方法[J]. 科学技术与工程, 2017, 17(20): 308-313. |
WANG X F, LI Q, FENG L. Aircraft fault diagnosis method based on model and fault-tree[J]. Science Technology and Engineering, 2017, 17(20): 308-313 (in Chinese). | |
7 | YOU S H, CHO Y M, HAHN J O. Model-based fault detection and isolation in automotive yaw moment control system[J]. International Journal of Automotive Technology, 2017, 18(3): 405-416. |
8 | ZHANG K, XU Y G, LIAO Z Q, et al. A novel Fast Entrogram and its applications in rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 154: 107582. |
9 | 林海香, 卢冉, 陆人杰, 等. 融合BiLSTM-CBA组合模型的高铁车载设备故障诊断[J]. 中国安全科学学报, 2022, 32(6): 79-86. |
LIN H X, LU R, LU R J, et al. Fault diagnosis of high-speed railway on-board equipment based on BiLSTM-CBA hybrid model[J]. China Safety Science Journal, 2022, 32(6): 79-86 (in Chinese). | |
10 | 王修岩, 薛斌斌, 李宗帅. 基于Petri网的飞机交流发电机故障诊断方法研究[J]. 计算机测量与控制, 2012, 20(4): 878-880. |
WANG X Y, XUE B B, LI Z S. Fault diagnosis methods of aircraft AC generator based on petri nets[J]. Computer Measurement & Control, 2012, 20(4): 878-880 (in Chinese). | |
11 | 王猛. 基于Petri网模型的高铁沿线外部环境安全风险研究[J]. 中国安全科学学报, 2022, 32(): 57-62. |
WANG M. Research on the safety risk of external environment along high-speed railway based on petri net model[J]. China Safety Science Journal, 2022, 32(Sup 1): 57-62 (in Chinese). | |
12 | 王凯, 樊纲旗, 董瑾, 等. 故障树分析法(FTA)在大型飞机机载设备系统故障诊断中的应用[J]. 现代制造技术与装备, 2018(11): 144-146. |
WANG K, FAN G Q, DONG J, et al. Application of fault tree analysis(FTA) in fault diagnosis of large aircraft airborne equipment system[J]. Modern Manufacturing Technology and Equipment, 2018(11): 144-146 (in Chinese). | |
13 | 陈洪转, 赵爱佳, 李腾蛟, 等. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
CHEN H Z, ZHAO A J, LI T J, et al. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree[J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261 (in Chinese). | |
14 | 李欣, 乔颖, 李想, 等. 基于ECA规则推理的故障诊断技术[J]. 计算机工程与设计, 2011, 32(3): 1023-1028. |
LI X, QIAO Y, LI X, et al. Fault diagnosis technology based on ECA rules[J]. Computer Engineering and Design, 2011, 32(3): 1023-1028 (in Chinese). | |
15 | 阴东玲, 陈兆波, 曾建潮, 等. 煤矿作业人员不安全行为的影响因素分析[J]. 中国安全科学学报, 2015, 25(12): 151-156. |
YIN D L, CHEN Z B, ZENG J C, et al. Analysis of factors affecting coal mine operators’ unsafe acts[J]. China Safety Science Journal, 2015, 25(12): 151-156 (in Chinese). | |
16 | EL-SHAFAI W, MAHMOUD A A, EL-RABAIE E S M, et al. Traditional Chinese medicine automated diagnosis based on knowledge graph reasoning[J]. Computers, Materials & Continua, 2022, 71(1): 159-170. |
17 | 刘凤娟, 赵蔚, 姜强, 等. 基于知识图谱的个性化学习模型与支持机制研究[J]. 中国电化教育, 2022(5): 75-81, 90. |
LIU F J, ZHAO W, JIANG Q, et al. Research on personalized learning model and support mechanism based on knowledge graph[J]. China Educational Technology, 2022(5): 75-81, 90 (in Chinese). | |
18 | 王杰, 谢忠局, 赵建涛, 等. 基于知识图谱和用户画像的金融产品推荐系统[J]. 计算机应用, 2022, 42(): 43-47. |
WANG J, XIE Z J, ZHAO J T, et al. Financial product recommendation system based on knowledge map and user portrait[J]. Journal of Computer Applications, 2022, 42(Sup 1): 43-47 (in Chinese). | |
19 | ZHAO Y C, ZHANG B K, GAO D. Construction of petrochemical knowledge graph based on deep learning[J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104736. |
20 | 邢雪琪, 丁雨童, 夏唐斌, 等. 基于知识图谱的商用飞机维修方案推荐系统集成建模[J]. 浙江大学学报(工学版), 2023, 57(3): 512-521. |
XING X Q, DING Y T, XIA T B, et al. Integrated modeling of commercial aircraft maintenance plan recommendation system based on knowledge graph[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(3): 512-521 (in Chinese). | |
21 | 薛坤. 面向军事领域的知识图谱构建与应用研究[D]. 大连: 大连理工大学, 2020. |
XUE K. Research on the construction and application of knowledge graph in the military field[D].Dalian: Dalian University of Technology, 2020 (in Chinese). | |
22 | 聂同攀, 曾继炎, 程玉杰, 等. 面向飞机电源系统故障诊断的知识图谱构建技术及应用[J]. 航空学报, 2022, 43(8): 625499. |
NIE T P, ZENG J Y, CHENG Y J, et al. Knowledge graph construction technology and its application in aircraft power system fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 625499 (in Chinese). | |
23 | DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. 2018: arXiv: 1810.04805. . |
24 | 陈克正, 郭晓然, 钟勇, 等. 基于负训练和迁移学习的关系抽取方法[J]. 计算机应用, 2023, 43(8): 2426-2430. |
CHEN K Z, GUO X R, ZHONG Y, et al. Relation extraction method based on negative training and transfer learning[J]. Journal of Computer Applications, 2023, 43(8): 2426-2430 (in Chinese). | |
25 | CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370. |
26 | CHE J L, TANG L, DENG S, et al. Chinese word segmentation based on Bidirectional GRU-CRF model[J]. International Journal of Performability Engineering, 2018,14(12): 3066-3075. |
27 | MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516. |
28 | MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516 |
29 | LV J H, DU J P, ZHOU N, et al. BERT-BIGRU-CRF: A novel entity relationship extraction model[C]∥ 2020 IEEE International Conference on Knowledge Graph (ICKG). Piscataway: IEEE Press, 2020: 157-164. |
30 | NGUYEN T H, GRISHMAN R. Relation extraction: Perspective from convolutional neural networks[C]∥ Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 39-48. |
31 | LAN W W, XU W. Neural network models for paraphrase identification, semantic textual similarity, natural language inference, and question answering[EB/OL]. 2018: arXiv: 1806.04330. |
32 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]∥ Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: Association for Computational Linguistics, 2016: 207-212. |
/
〈 |
|
〉 |