ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Overall parameter design of solar UAV considering uncertainty
Received date: 2023-11-10
Revised date: 2023-12-01
Accepted date: 2023-12-22
Online published: 2023-12-29
Compared with the design of conventional aircraft, that of ultra-high-altitude solar UAV platforms needs to meet special requirements such as weak energy balance, high lift-drag ratio, ultra-low wing load, and ultra-lightweight structure. Therefore, the overall parameter value is closely related to the structure, energy, power and other sub-system parameters and performance parameters, and the change of each sub-system parameter and the performance parameter will directly affect the design result of the overall parameter. Based on the energy balance constraint and weight balance constraint, the overall parameter model of ultra-high altitude solar UAVs is established in this paper. Next, with the aspect ratio and photovoltaic panel rate as optimization design variables and the aircraft take-off weight and wing area as optimization objectives, an overall parameter design method considering the influence of uncertainty is proposed based on the deterministic overall parameter optimization model by introducing the uncertainty of key parameters, overcoming the limitations of the deterministic overall parameter design method. In addition to improving the performance of the overall parameter, the feasible probability of the overall parameter under parameter perturbation is ensured.
Yuan YAO , Yuke DAI , Yiming XU . Overall parameter design of solar UAV considering uncertainty[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 529856 -529856 . DOI: 10.7527/S1000-6893.2023.29856
1 | YOUNGBLOOD J, TALAY T. Solar-powered airplane design for long-endurance, high-altitude flight[C]∥Proceedings of the 2nd International Very Large Vehicles Conference. Reston: AIAA, 1982. |
2 | YOUNGBLOOD J, TALAY T, PEGG R. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion[C]∥Proceedings of the 20th Joint Propulsion Conference. Reston: AIAA, 1984. |
3 | NOTH A. Design of solar powered airplanes for continous flight[D]. Zurich: ETH Zurich, 2008. |
4 | NAZARUDEEN S, HARASANI W I, RAFIQUE A F. Conceptual design of a Solar HALE UAV[J]. Journal of Advanced Research Design, 2018, 44(1): 30-40. |
5 | JIAJAN W, KAMPOON J, KLONGTRUJROK J, et al. Conceptual design of tactical solar power UAV[J]. IOP Conference Series: Materials Science and Engineering, 2019, 501: 012011. |
6 | BRANDT S A, GILLIAM F T. Design analysis methodology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4): 703-709. |
7 | MALEKI M H. Conceptual design method for solar powered aircrafts[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
8 | SULTAN S. Solaris project: The design of a solar powered UAV [D]. V?ster?s: M?lardalen University, 2011. |
9 | TSAGARAKIS M. Project solaris-analysis of airfoil for solar powered flying wing UAV[D]. V?ster?s: M?lardalen University, 2011. |
10 | LAUKKANEN M. Project solaris-mass and balance analysis tool for a solar powered UAV[D]. V?ster?s:M?lardalen University, 2009. |
11 | ROMEO G, FRULLA G. Heliplat?: High altitude very-long endurance solar powered UAV for telecommunication and Earth observation applications[J]. The Aeronautical Journal, 2004, 108(1084): 277-293. |
12 | ROMEO G, FRULLA G, CESTINO E. Heliplat?: A high altitude very-long endurance solar powered platform for border patrol and forest fire detection[J]. WIT Transactions on the Built Environment, 2005, 82(1): 1743-3509. |
13 | CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science and Technology, 2006, 10(6): 541-550. |
14 | 张德虎, 张健, 李军府. 太阳能飞机能量平衡建模[J]. 航空学报, 2016, 37(S1): 16-23. |
ZHANG D H, ZHANG J, LI J F. Energy balance modeling of solar-powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 16-23 (in Chinese). | |
15 | 昌敏, 周洲, 李盈盈. 基于能量平衡的太阳能飞机可持续高度分析[J]. 西北工业大学学报, 2012, 30(4): 541-546. |
CHANG M, ZHOU Z, LI Y Y. An effective theoretical analysis of persistent flight altitudes of solar-powered airplanes[J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 541-546 (in Chinese). | |
16 | 杨宇丹, 朱炳杰, 郭正, 等. 太阳能无人机能源系统参数的敏度分析[J]. 上海交通大学学报, 2020, 54(10): 1045-1052. |
YANG Y D, ZHU B J, GUO Z, et al. The sensitivity analysis of energy system parameters of solar powered unmanned aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1045-1052 (in Chinese). | |
17 | 田孟伟, 赵立杰. 太阳能无人机功率-能量平衡计算的参数化分析[J]. 飞机设计, 2020, 40(5): 24-27. |
TIAN M W, ZHAO L J. Parametric analysis of power-energy balance calculation of solar UAV[J]. Aircraft Design, 2020, 40(5): 24-27 (in Chinese). | |
18 | 张芳, 徐含乐, 任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程, 2012, 12(24): 6245-6251. |
ZHANG F, XU H L, REN W. Research of Special Solar-powered Aircraft Conceptual Parameters design method[J]. Science Technology and Engineering, 2012, 12(24): 6245-6251 (in Chinese). | |
19 | GUEYMARD C A. Revised composite extraterrestrial spectrum based on recent solar irradiance observations[J]. Solar Energy, 2018, 169: 434-440. |
20 | REDA I, ANDREAS A. Solar position algorithm for solar radiation applications[J]. Solar Energy, 2004, 76(5): 577-589. |
21 | 乔宇航, 马东立, 邓小刚. 基于升力线理论的机翼几何扭转设计方法[J]. 北京航空航天大学学报, 2013, 39(3): 320-324. |
QIAO Y H, MA D L, DENG X G. Wing geometric twist design method based on lifting-line theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 320-324 (in Chinese). | |
22 | ZHU J J, WANG X J, ZHANG H G, et al. Six sigma robust design optimization for thermal protection system of hypersonic vehicles based on successive response surface method[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2095-2108. |
/
〈 |
|
〉 |