Swarm Intelligence and Cooperative Control

Nonlinear observability-enhancement optimal guidance law for moving targets

  • Ziyi WU ,
  • Shaoming HE ,
  • Yadong WANG ,
  • Hongyan LI
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Beijing Key Laboratory of UAV Autonomous Control,Beijing Institute of Technology,Beijing 100081,China
    3.School of Information Science and Technology,Tsinghua University,Beijing 100084,China
    4.School of Electronic and Information Engineering,Beihang University,Beijing 100191,China

Received date: 2023-10-20

  Revised date: 2023-11-21

  Accepted date: 2023-12-11

  Online published: 2023-12-26

Supported by

National Natural Science Foundation of China(52302449)

Abstract

This paper proposes a nonlinear observability-enhancement optimal guidance law for moving targets of the missiles with strapdown seekers. Firstly, a nonlinear relative motion model between the missile and the moving target is constructed based on a virtual relative coordinate system with its origin fixed at the target, so that the linearization process can be avoided under the condition of small-angle assumption. Secondly, the integral of the LOS rate is leveraged as the measure of target observability based on the Cramer-Rao lower bound theory. The performance index to be optimized is designed by considering target observability, guidance accuracy and energy consumption. In addition, the dependence on the time-to-go is removed by utilizing the relative range as the independent variable. The analytical solution for the guidance law is derived by using calculus of variation. The simulation results show that the proposed guidance law can intercept moving targets using bearing-only measurements. Compared with the observability-enhancement optimal guidance laws based on the linearized model, the proposed guidance law can enhance the system observability more significantly, which results in a smaller value of the estimation error of guidance information, faster convergence, and higher hit accuracy of the missile.

Cite this article

Ziyi WU , Shaoming HE , Yadong WANG , Hongyan LI . Nonlinear observability-enhancement optimal guidance law for moving targets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729750 -729750 . DOI: 10.7527/S1000-6893.2023.29750

References

1 WANG J N, PENG X L, WANG Z H. Research on line of sight angular rate estimation of strapdown seeker[C]∥ Proc SPIE 12500, Fifth International Conference on Mechatronics and Computer Technology Engineering (MCTE 2022), 202212500: 576-583.
2 张铎, 宋建梅, 赵良玉, 等. 考虑非高斯相关噪声的视线角速率提取算法[J]. 航空学报202142(7): 324629.
  ZHANG D, SONG J M, ZHAO L Y, et al. Extraction algorithm for line of sight angular rate in non-Gaussian correlative noise environment[J]. Acta Aeronautica et Astronautica Sinica202142(7): 324629 (in Chinese).
3 HOU B W, WANG D Y, WANG J Q, et al. Optimal maneuvering for autonomous relative navigation using monocular camera sequential images[J]. Journal of Guidance Control Dynamics202144(11): 1947-1960.
4 钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2013:102-112.
  QIAN X F, LIN R X, ZHAO Y N. Flight dynamics of missile[M]. Beijing:Beijing Institute of Technology Press, 2013:102-112 (in Chinese).
5 KIM T H, LEE C H, TAHK M J. Time-to-go polynomial guidance with trajectory modulation for observability enhancement[J]. IEEE Transactions on Aerospace and Electronic Systems201349(1): 55-73.
6 LEE C H, KIM T H, TAHK M J. Biased PNG for target observability enhancement against nonmaneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems201551(1): 2-17.
7 LEE H I, SHIN H S, TSOURDOS A. Weaving guidance for missile observability enhancement[J]. IFAC-PapersOnLine201750: 15197-15202.
8 ROH H, SHIM S W, TAHK M J. Maneuver algorithm for bearings-only target tracking with acceleration and field of view constraints[J]. International Journal of Aeronautical and Space Sciences201819(2): 423-432.
9 LI B, TANG P, XU H T, et al. Terminal impact angle control guidance law considering target observability[J]. Aerospace20229(4): 193.
10 WANG T N, TANG S J, GUO J, et al. Two-phase optimal guidance law considering impact angle constraint with bearings-only measurements[J]. International Journal of Aerospace Engineering20172017: 1380531.
11 MOK S H, PI J, BANG H. One-step rendezvous guidance for improving observability in bearings-only navigation[J]. Advances in Space Research202066(11): 2689-2702.
12 LEE D, TAHK M J, LEE C H. Optimal threshold of intermittent maneuver for target observability improvement[J]. International Journal of Aeronautical and Space Sciences202122(4): 911-922.
13 花文华, 张金鹏. 纯方位量测下增强可观测性的微分对策制导律[J]. 哈尔滨工业大学学报202355(4): 122-129.
  HUA W H, ZHANG J P. Differential game guidance law for enhanced observability with bearings-only measurements[J]. Journal of Harbin Institute of Technology202355(4): 122-129 (in Chinese).
14 YUAN H, LI D X. Deep reinforcement learning for rendezvous guidance with enhanced angles-only observability[J]. Aerospace Science and Technology2022129: 107812.
15 HE S M, SHIN H S, RA W S, et al. Observability-enhancement optimal guidance law[C]∥ 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS). Piscataway: IEEE Press, 2019: 315-324.
16 WANG Y D, WANG J, HE S M, et al. Optimal guidance with active observability enhancement for scale factor error estimation of strapdown seeker[J]. IEEE Transactions on Aerospace and Electronic Systems202157(6): 4347-4362.
17 MISHLEY A, SHAFERMAN V. Optimal guidance with an intercept angle constraint for varying speed adversaries[C]∥ AIAA SCITECH 2022 Forum. Reston: AIAA, 2022.
18 MUDRIK L, OSHMAN Y. Information-enhancement via trajectory shaping in Bayesian decision-directed stochastic guidance[C]∥ AIAA SCITECH 2023 Forum. Reston: AIAA, 2023.
19 LI J N, NING Z A, HE S M, et al. Three-dimensional bearing-only target following via observability-enhanced helical guidance[J]. IEEE Transactions on Robotics202339(2): 1509-1526.
20 KANG H L, WANG P Y, WEI S H, et al. Three-dimensional impact-time-constrained proportional navigation guidance using range-varying gain[J]. Aerospace Science and Technology2023140: 108419.
21 李昊键, 刘远贺, 梁彦刚, 等. 考虑视场角约束的碰撞角控制预设性能制导律[J]. 航空学报202344(15): 528764.
  LI H J, LIU Y H, LIANG Y G, et al. Prescribed performance guidance law with field-of-view and impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528764 (in Chinese).
22 李国飞, 李博皓, 吴云洁, 等. 多群组飞行器攻击时间控制协同制导方法[J]. 宇航学报202344(1): 110-118.
  LI G F, LI B H, WU Y J, et al. Cooperative guidance law with impact time control for clusters of flight vehicles[J]. Journal of Astronautics202344(1): 110-118 (in Chinese).
23 王亚宁, 王辉, 林德福, 等. 基于虚拟视角约束的机动目标拦截制导方法[J]. 航空学报202243(1): 324799.
  WANG Y N, WANG H, LIN D F, et al. Guidance method for maneuvering target interception based on virtual look angle constraint[J]. Acta Aeronautica et Astronautica Sinica202243(1): 324799 (in Chinese).
24 HE S M, SHIN H S, TSOURDOS A. Trajectory optimization for target localization with bearing-only measurement[J]. IEEE Transactions on Robotics201935(3): 653-668.
Outlines

/