Electronics and Electrical Engineering and Control

Relative aircraft positioning based on inertial navigation and datalink

  • Kun LI ,
  • Shuhui BU ,
  • Xuan JIA ,
  • Yifei DONG ,
  • Lin CHEN
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an 71000,China

Received date: 2023-09-18

  Revised date: 2023-10-17

  Accepted date: 2023-12-06

  Online published: 2023-12-26

Abstract

Formation flying has emerged as a prominent aircraft operational mode, necessitating precise relative positioning of aircraft within the formation as a fundamental requirement. In Global Navigation Satellite System (GNSS)-denied environments, aircraft experience a loss of global positioning information, making it challenging to derive relative aircraft positioning solely from local data sources. To address the relative positioning challenge among aircraft within a formation in GNSS-denied environments, this paper introduces a method that integrates data link and inertial navigation. Firstly, the inertial navigation method is employed to give a real-time calculation of the positioning information of each aircraft, which is then transmitted to other aircraft through its respective data link. Subsequently, each aircraft conducts measurements of the relative positions between the aircraft in the formation by using the received information from other aircraft and the data link. Finally, leveraging the continuous time series of inertial navigation data and data link measurements, a relative pose optimization factor graph is constructed to solve the relative poses between the aircraft in real time. Simulation and experimental verification are undertaken, employing a two-aircraft formation as a case study. The outcomes indicate that this method proposed enables real-time estimation of the relative positions of aircraft within the formation. Experimental results demonstrate that this method reduces the distance error measured by the data link by 76%, and can provide accurate and reliable relative position information for formation flight.

Cite this article

Kun LI , Shuhui BU , Xuan JIA , Yifei DONG , Lin CHEN . Relative aircraft positioning based on inertial navigation and datalink[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 329594 -329594 . DOI: 10.7527/S1000-6893.2023.29594

References

1 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报202041(S1): 723738.
  JIA Y N, TIAN S Y, LI Q. Review on research progress of UAV cluster[J]. Acta Aeronautica et Astronautica Sinica202041(Sup 1): 723738 (in Chinese).
2 姜霞, 曾宪琳, 孙健, 等. 多飞行器的分布式优化研究现状与展望[J]. 航空学报202142(4): 524551.
  JIANG X, ZENG X L, SUN J, et al. Research status and prospect of distributed optimization for multiple aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524551 (in Chinese).
3 SHEN J W, WANG S Z, ZHAI Y, et al. Cooperative relative navigation for multi‐UAV systems by exploiting GNSS and peer‐to‐peer ranging measurements[J]. IET Radar, Sonar & Navigation, 202115(1): 21-36.
4 XIONG J, XIONG Z, CHEONG J W, et al. Cooperative positioning for low-cost close formation flight based on relative estimation and belief propagation[J]. Aerospace Science and Technology2020106: 106068.
5 岳敬轩, 王红茹, 朱东琴, 等. 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报202344(14): 327995.
  YUE J X, WANG H R, ZHU D Q, et al. UAV formation cooperative navigation algorithm based on improved particle filter[J]. Acta Aeronautica et Astronautica Sinica202344(14): 327995 (in Chinese).
6 谢启龙, 宋龙, 鲁浩, 等. 协同导航技术研究综述[J]. 航空兵器201926(4): 23-30.
  XIE Q L, SONG L, LU H, et al. Review of collaborative navigation technology[J]. Aero Weaponry201926(4): 23-30 (in Chinese).
7 NASSER G, HATILIMA JASPER V, HUBERT R, et al. A review of GNSS-independent UAV navigation techniques[J]. Robotics and Autonomous Systems2022152: 104069.
8 DEHGHANI M A, MENHAJ M B. Integral sliding mode formation control of fixed-wing unmanned aircraft using seeker as a relative measurement system[J]. Aerospace Science and Technology201658: 318-327.
9 FAIGL J, KRAJNíK T, CHUDOBA J, et al. Low-cost embedded system for relative localization in robotic swarms[C]∥ 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 993-998.
10 WALTER V, SASKA M, FRANCHI A. Fast mutual relative localization of UAVs using ultraviolet LED markers[C]∥ 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 1217-1226.
11 SANSONE F, BRANZ F, FRANCESCONI A. A relative navigation sensor for CubeSats based on LED fiducial markers[J]. Acta Astronautica2018146: 206-215.
12 SANSONE F, FRANCESCONI A, OLIVIERI L, et al. Low-cost relative navigation sensors for miniature spacecraft and drones[C]∥ 2015 IEEE Metrology for Aerospace (MetroAeroSpace). Piscataway: IEEE Press, 2015: 389-394.
13 WANG Q Q, CHAN K F, SCHWEIZER K, et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery[J]. Science Advances20217(9): eabe5914.
14 CHATTERJEE S, CHAKRABORTY S, NATH A, et al. Near-real-time detection of craters: A YOLO v5 based approach[C]∥ 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS). Piscataway: IEEE Press, 2023: 1-4.
15 刘俊成, 张京娟, 冯培德. 基于相互测距信息的机群组网协同定位技术[J]. 北京航空航天大学学报201238(4): 541-545.
  LIU J C, ZHANG J J, FENG P D. Swarming aircraft collaborative localization based on mutual rangings[J]. Journal of Beijing University of Aeronautics and Astronautics201238(4): 541-545 (in Chinese).
16 CAO S, QIN H L, CONG L, et al. Multi-slots joint MLE relative navigation algorithm based on INS/JTIDS/BA for datalink network[J]. IEEE Access20208: 136795-136807.
17 严飞, 傅金琳, 张崇猛, 等. 惯性信息辅助的源信息不同步的数据链相对定位方法[J]. 中国惯性技术学报202028(3): 360-364.
  YAN F, FU J L, ZHANG C M, et al. INS aided relative positioning method of data link with unsynchronized source information[J]. Journal of Chinese Inertial Technology202028(3): 360-364 (in Chinese).
18 郝菁, 蔚保国, 何成龙. 基于惯导/数据链的动态相对定位方法[J]. 计算机测量与控制201826(10): 191-195.
  HAO J, YU B G, HE C L. Dynamic relative positioning method based on inertial navigation and data link[J]. Computer Measurement & Control201826(10): 191-195 (in Chinese).
19 钟日进, 陈琪锋. 利用集群内测距和对目标测向的协同定位方法[J]. 航空学报202041(S1): 723768.
  ZHONG R J, CHEN Q F. Collaborative positioning method using intra-cluster ranging and direction finding of targets[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723768 (in Chinese).
20 于卓静, 孙永荣, 朱云峰, 等. 测角测距信息下的双机协同高精度定位算法[J]. 兵工自动化201938(2): 1-5.
  YU Z J, SUN Y R, ZHU Y F, et al. High precision algorithm of dual-aircraft cooperative locating with angle and distance information[J]. Ordnance Industry Automation201938(2): 1-5 (in Chinese).
21 赖玮清, 万九卿. 基于路径和算法的飞行器集群分布式相对定位[J]. 航空学报202445(4): 328735.
  LAI W Q, WAN J Q. Distributed relative positioning of aircraft group based on path-sum algorithm[J]. Acta Aeronautica et Astronautica Sinica202445(4): 328735.
22 牛皓飞, 蔡庆中, 李健, 等. 基于图优化的通信受限环境下协同导航方法[J]. 航空学报202344(11): 327342.
  NIU H F, CAI Q Z, LI J, et al. Method for cooperative navigation in constrained environment based on graph optimization[J]. Acta Aeronautica et Astronautica Sinica202344(11): 327342 (in Chinese).
23 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019.
  YAN G M, WENG J. Strapdown inertial navigation algorithm and integrated navigation principle[M]. Xi’an: Northwestern Polytechnical University Press, 2019 (in Chinese).
24 赵龙. 惯性导航原理与系统应用设计[M]. 北京: 北京航空航天大学出版社, 2020.
  ZHAO L. Inertial navigation principle and system application design[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2020 (in Chinese).
Outlines

/