Electronics and Electrical Engineering and Control

A comprehensive evaluation method of ADS⁃B data quality based on clustering and AdaBoost

  • Zhaoyue ZHANG ,
  • Ying YANG
Expand
  • College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China

Received date: 2023-09-14

  Revised date: 2023-11-03

  Accepted date: 2023-12-11

  Online published: 2023-12-26

Supported by

Fundamental Research Funds for the Central Universities(3122022105);A Key Project of Tianjin Diversified Investment Fund(21JCZDJC00780)

Abstract

Traditional methods for ADS-B data quality assessment cannot obtain the quality level objectively and accurately. For better application of ADS-B data, an ADS-B data quality evaluation index system is constructed on the basis of analysis of ADS-B data quality requirements in industry applications, transmitting equipment performance, data security, etc. A new data quality evaluation method is proposed based on the ensemble learning Adaptive Boosting (AdaBoost) algorithm. In this method, the best quality grade category is determined by K⁃means clustering, data labels are determined by combining the Technique for Order Preference by Similarity to Idealsolution (TOPSIS), and the evaluation model is trained and optimized by the AdaBoost algorithm. The data of Tianjin Airport are use for case analysis. The experiment shows that it is the best scheme to divide ADS-B data quality into 5 grades, and the accuracy of the obtained data quality evaluation model is as high as 98.5%. This verifies that the method proposed can effectively avoid the influence of subjective factors and obtain the optimal quality grade classification, improving the stability and accuracy of evaluation results.

Cite this article

Zhaoyue ZHANG , Ying YANG . A comprehensive evaluation method of ADS⁃B data quality based on clustering and AdaBoost[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 329584 -329584 . DOI: 10.7527/S1000-6893.2023.29584

References

1 MUELLER R K. Quality of reported NACP in surveillance and broadcast services systems[C]∥ 2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2009: 1-8.
2 沈笑云, 唐鹏, 张思远, 等. ADS-B统计数据的位置导航不确定类别质量分析[J]. 航空学报201536(9): 3128-3136.
  SHEN X Y, TANG P, ZHANG S Y, et al. Quality analysis of navigation uncertain category for position based on ADS-B statistical data[J]. Acta Aeronautica et Astronautica Sinica201536(9): 3128-3136 (in Chinese).
3 LIN X, ZHANG J, ZHU Y B, et al. Surveillance accuracy analysis of ADS-B supporting the separation service in western China[C]∥ 2009 Integrated Communications, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2009: 1-6.
4 ZHAO W W, LIU D H. Integrity verification of ADS-B navigation data source[C]∥ 2020 3rd International Conference on Advanced Algorithms and Control Engineering (ICAACE). Bristol: IOP Publishing, 2020: 1-5.
5 LV Z P, WANG L L, NI Y D. Navigation data resource availability of ADS-B[C]∥ Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE). Piscataway: IEEE Press, 2011: 572-575.
6 REKKAS C, REES M. Towards ADS-B implementation in Europe[C]∥ 2008 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles. Piscataway: IEEE Press, 2008: 1-4.
7 TABASSUM A, ALLEN N, SEMKE W. ADS-B message contents evaluation and breakdown of anomalies[C]∥ 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2017: 1-8.
8 ZHANG J, LIU W, ZHU Y B. Study of ADS-B data evaluation[J]. Chinese Journal of Aeronautics201124(4): 461-466.
9 VERBRAAK T L, ELLERBROEK J, SUN J. Large-scale ADS-B data and signal quality analysis[C]∥ Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar (ATM 2017). 2017: 1-10.
10 ALI B S, TAIB N A. A study on geometric and barometric altitude data in Automatic Dependent Surveillance Broadcast (ADS-B) messages[J]. Journal of Navigation201972(5): 1140-1158.
11 ALI B S, OCHIENG W Y, ZAINUDIN R. An analysis and model for Automatic Dependent Surveillance Broadcast (ADS-B) continuity[J]. GPS Solutions201721(4): 1841-1854.
12 TESI S, PLENINGER S. Analysis of quality indicators in ADS-B messages[J]. MAD-Magazine of Aviation Development20175(3): 6-12.
13 NINKAESORN W, POOLGATE S, LUNZEAR I, et al. Automatic Dependent Surveillance-Broadcast (ADS-B) data observation and quality assessment in Thailand[C]∥ 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). Piscataway: IEEE Press, 2021: 1-4.
14 ALI B S, SCHUSTER W, OCHIENG W, et al. Framework for ADS-B performance assessment: The London TMA case study[J]. Navigation201461(1): 39-52.
15 唐鹏. 基于ADS-B数据监视性能评估技术研究[D]. 天津: 中国民航大学, 2015: 38-43.
  TANG P. Research on evaluation techniques of surveillance performance based on ADS-B data[D].Tianjin: Civil Aviation University of China, 2015: 38-43 (in Chinese).
16 王运帷. 陆基与星基ADS-B系统数据质量研究[D]. 天津: 中国民航大学, 2018: 20-25.
  WANG Y W. Research of land-based and space-based ADS-B system data quaility[D].Tianjin: Civil Aviation University of China, 2018: 20-25 (in Chinese).
17 孟祥宇. 用于航空安全监视的ADS-B数据质量评估[D]. 天津: 中国民航大学, 2019: 39-49.
  MENG X Y. ADS-B data quality assessment for aviation safety surveillance[D].Tianjin: Civil Aviation University of China, 2019: 39-49 (in Chinese).
18 何汶黛. 基于ADS-B的监控数据质量评估与研究[D]. 广汉: 中国民用航空飞行学院, 2021: 42-48.
  HE W D. Research on quality assessment for ADS-B based moitoring data[D].Guanghan: Civil Aviation Flight University of China, 2021: 42-48 (in Chinese).
19 赵荣达, 张妍, 梁洪健, 等. 基于GS-AdaBoost优化模型的隧道入口车辆换道行为预测[J]. 昆明理工大学学报(自然科学版)202449(1): 147-155.
  ZHAO R D, ZHANG Y, LIANG H J, et al. Prediction of lane-changing behavior of vehicles at tunnel entrances based on GS-AdaBoost optimized model[J]. Journal of Kunming University of Science and Technology (Natural Science)202449(1): 147-155 (in Chinese).
20 Radio Technical Commission for Aeronautics. Minimum operational performance standards for 1090 MHz extended squitter Automatic Dependent Surveillance?Broadcast (ADS-B) and Traffic Information Services?Broadcast (TIS-B): RTCA DO-260B [S]. Washington, D.C.: RTCA, 2011.
21 Radio Technical Commission for Aeronautics. Safety, performance and interoperability requirements document for the ADS-B Non-Radar-Airspace (NRA) application: RTCA DO-303 [S]. Washington, D.C.: RTCA, 2006.
22 Radio Technical Commission for Aeronautics. Safety, performance and interoperability requirements document for enhanced air traffic services in radar-controlled areas using ADS-B surveillance (ADS-B-RAD): RTCA DO-318 [S]. Washington, D.C.: RTCA, 2009.
23 Radio Technical Commission for Aeronautics. Minimum aviation system performance standards for Automatic Dependent Surveillance Broadcast (ADS-B): DO-242A [S]. Washington, D.C.: RTCA, 2002.
24 中国民用航空局. 在无雷达区使用1090兆赫扩展电文广播式自动相关监视的适航和运行批准指南: AC-91-FS/AA-2010-14 [S]. 北京: 中国民用航空局, 2010.
  Civil Aviation Administration of China. The airworthiness and operational approval guidelines of 1090 MHz ES automatic dependent surveillance-broadcast in none radar areas: AC-91-FS/AA-2010-14 [S]. Beijing: Civil Aviation Administration of China, 2010 (in Chinese).
25 EUROCONTROL. EUROCONTROL Specification for ATM surveillance system performance (volume 1):EUROCONTROL-SPEC-0147 [S]. Brussels:European Organization for the Air Navigation, 2021.
26 张悦.中国上市公司研发指数的构建研究[J]. 会计之友2016(10):73-78.
  ZHANG Y. Research on the construction of R&D index of Chinese listed companies[J]. Friends of Accounting2016(10):73-78 (in Chinese).
27 吴海燕, 陈晓磊, 范国轩. 一种自适应核SMOTE- SVM算法用于不平衡数据分类[J]. 北京化工大学学报(自然科学版)202350(2): 97-104.
  WU H Y, CHEN X L, FAN G X. An adaptive kernel SMOTE- SVM algorithm for imbalanced data classification[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition)202350(2): 97-104 (in Chinese).
28 冉浦东, 范磊, 张军, 等. 基于改进Adaboost-SVM的风机叶片覆冰检测[J]. 计算机应用与软件202340(5): 110-114.
  RAN P D, FAN L, ZHANG J, et al. Icing detection for wind turbine blades based on improved Adaboost-SVM[J]. Computer Applications and Software202340(5): 110-114 (in Chinese).
29 魏勇, 李建文, 郭亮亮, 等. 基于TOPSIS的GNSS数据质量评估方法研究[J]. 大地测量与地球动力学201636(10): 892-896.
  WEI Y, LI J W, GUO L L, et al. Research on GNSS data quality evaluation based on TOPSIS[J]. Journal of Geodesy and Geodynamics201636(10): 892-896 (in Chinese).
Outlines

/