Swarm Intelligence and Cooperative Control

Distributed adaptive event⁃triggered formation control for QUAVs

  • Hongzhen GUO ,
  • Mou CHEN ,
  • Yongdong DAI ,
  • Maofei WANG
Expand
  • 1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.State Grid Taizhou Power Supply Company,Taizhou 225300,China

Received date: 2023-11-28

  Revised date: 2023-12-01

  Accepted date: 2023-12-06

  Online published: 2023-12-21

Supported by

National Key Research and Development Program of China(2023YFB4704400);National Natural Science Foundation of China(U2013201);Jiangsu Province Special Funds for Science and Technology(BZ2023057)

Abstract

In this paper, a distributed adaptive event-triggered formation control method is proposed for Quadrotor Unmanned Aerial Vehicles (QUAVs) with unknown external disturbances and limited computational resources. Firstly, the parameter adaptive method is used to deal with the adverse effects of unknown external disturbances, and the parameter updating law is updated only at event-triggered instants to further reduce the computational cost. Then, the distributed formation controller is developed based on the parameter adaptive method and the event-triggered mechanism. Moreover, the uniformly ultimately bounded stability of the control system is accomplished by the Lyapunov theorem. Finally, flight experiments are implemented to verify the effectiveness and reliability of the proposed control method.

Cite this article

Hongzhen GUO , Mou CHEN , Yongdong DAI , Maofei WANG . Distributed adaptive event⁃triggered formation control for QUAVs[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729917 -729917 . DOI: 10.7527/S1000-6893.2023.29917

References

1 ZHAO W B, LIU H, LEWIS F L, et al. Robust visual servoing control for ground target tracking of quadrotors[J]. IEEE Transactions on Control Systems Technology202028(5): 1980-1987.
2 LIANG X, FANG Y C, SUN N, et al. A novel energy-coupling-based hierarchical control approach for unmanned quadrotor transportation systems[J]. IEEE/ASME Transactions on Mechatronics201924(1): 248-259.
3 H?NIG W, PREISS J A, SATISH KUMAR T K, et al. Trajectory planning for quadrotor swarms[J]. IEEE Transactions on Robotics201834(4): 856-869.
4 JIN X Z, CHE W W, WU Z G, et al. Robust adaptive general formation control of a class of networked quadrotor aircraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202252(12): 7714-7726.
5 GUO H Z, CHEN M, JIANG Y H, et al. Distributed adaptive human-in-the-loop event-triggered formation control for QUAVs with quantized communication[J]. IEEE Transactions on Industrial Informatics202319(6): 7572-7582.
6 ZHOU N, CHENG X D, SUN Z Q, et al. Fixed-time cooperative behavioral control for networked autonomous agents with second-order nonlinear dynamics[J]. IEEE Transactions on Cybernetics202152(9): 9504-9518.
7 LIAO F, TEO R, WANG J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology201725(1): 270-277.
8 NGUYEN N P, OH H, MOON J. Continuous nonsingular terminal sliding-mode control with integral-type sliding surface for disturbed systems: Application to attitude control for quadrotor UAVs under external disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5635-5660.
9 WEN G X, GE S S, TU F W, et al. Artificial potential-based adaptive H synchronized tracking control for accommodation vessel[J]. IEEE Transactions on Industrial Electronics201764(7): 5640-5647.
10 ASIGNACION A, SUZUKI S, NODA R, et al. Frequency-based wind gust estimation for quadrotors using a nonlinear disturbance observer[J]. IEEE Robotics and Automation Letters20227(4): 9224-9231.
11 SHAO S Y, CHEN M, HOU J, et al. Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer[J]. IEEE/ASME Transactions on Mechatronics202126(2): 689-699.
12 HUA H A, FANG Y C, ZHANG X T, et al. A novel robust observer-based nonlinear trajectory tracking control strategy for quadrotors[J]. IEEE Transactions on Control Systems Technology202129(5): 1952-1963.
13 WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 834-847.
14 张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报202344(15): 528494.
  ZHANG H, WANG P, TANG G J, et al. Event-triggered fast finite time control for hypersonic morphing vehicles[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528494 (in Chinese).
15 CHEN Y J, LIANG J C, WU Y N, et al. Adaptive sliding-mode disturbance observer-basedfinite-time control for unmanned aerial manlpulator with prescribed performance[J]. IEEE Transactions on Cybernetics202353(5): 3263-3276.
16 WANG H, SHAN J J. Fully distributed event-triggered formation control for multiple quadrotors[J]. IEEE Transactions on Industrial Electronics202370(12): 12566-12575.
17 SUN Z Y, LIU Q C, HUANG N, et al. Cooperative event-based rigid formation control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(7): 4308-4320.
18 ZHANG Z R, WEN C Y, XING L T, et al. Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only[J]. IEEE Transactions on Automatic Control202267(8): 4218-4225.
19 WANG A Q, LIU L, QIU J B, et al. Event-triggered robust adaptive fuzzy control for a class of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems201927(8): 1648-1658.
20 YI X L, LIU K, DIMAROGONAS D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control201964(8): 3300-3307.
21 陈浩岚, 王鹏, 汤国建. 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报202344(15): 528762.
  CHEN H L, WANG P, TANG G J. Attitude control scheme for morphing vehicles with output error constraints and input saturation[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528762 (in Chinese).
22 ZHU C J, CHEN J C, IWASAKI M, et al. Event-triggered deep learning control of quadrotors for trajectory tracking[J]. IEEE Transactions on Industrial Electronics202471(3): 2726-2736.
23 YANG S, XIAN B. Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload[J]. IEEE Transactions on Industrial Electronics202067(3): 2054-2064.
24 CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica201147(3): 452-465.
25 DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics201764(6): 5014-5024.
26 LI Y X, YANG G H. Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications[J]. IEEE Transactions on Neural Networks and Learning Systems201829(12): 6242-6251.
27 SHAN Q H, CHEN Z Z, LI T S, et al. Consensus of multi-agent systems with impulsive perturbations and time-varying delays by dynamic delay interval method[J]. Communications in Nonlinear Science and Numerical Simulation201978: 104890.
28 LI X D, PENG D X, CAO J D. Lyapunov stability for impulsive systems via event-triggered impulsive control[J]. IEEE Transactions on Automatic Control202065(11): 4908-4913.
Outlines

/