special column

Material removal mechanism and surface integrity of cutting titanium aluminum alloy under different cooling conditions

  • Xiangyu WANG ,
  • Jinhui WANG ,
  • Wenhao QIU ,
  • Jintao NIU ,
  • Xiuli FU ,
  • Yang QIAO
Expand
  • School of Mechanical Engineering,University of Jinan,Jinan 250022,China

Received date: 2023-08-23

  Revised date: 2023-09-21

  Accepted date: 2023-10-04

  Online published: 2023-12-21

Supported by

National Natural Science Foundation of China(52005215);Shandong Province Higher Education Science and Technology Plan(2019KJB021)

Abstract

Titanium aluminum alloy has such advantages as low density, high strength, good high-temperature creep resistance and oxidation resistance, and has broad application prospects in the aerospace industry. However, due to the poor thermal conductivity, severe work hardening, and low-temperature brittleness of the material, the high cutting temperature during the cutting processing leads to low machining efficiency, low tool life, and poor surface integrity, which limits the application promotion of this material. this paper Focusing on the problem of high cutting temperature of titanium aluminum alloy, and based on its temperature sensitive mechanical properties, this paper investigates the mechanical properties, material removal mechanism, and surface integrity of titanium aluminum alloy Ti-48Al-2Cr-2Nb material. The dynamic failure behavior and fracture mechanism of the material at different temperatures are studied through Hopkinson impact shear tests. The chip morphology and morphology evolution under different cooling conditions and cutting parameters are simulated through finite element simulation. Face turning experiments are conducted under three different cooling environments, and the changing rule of surface roughness is analyzed. Combining the fracture mechanism of the material and the fracture form of the lamellar structure, the formation mechanisms of micro pits and microcracks are revealed. The degree of work hardening and the depth of the hardened layer are analyzed by combining cutting force and cutting temperature, revealing the changing rule of hardness.

Cite this article

Xiangyu WANG , Jinhui WANG , Wenhao QIU , Jintao NIU , Xiuli FU , Yang QIAO . Material removal mechanism and surface integrity of cutting titanium aluminum alloy under different cooling conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 629471 -629471 . DOI: 10.7527/S1000-6893.2023.29471

References

1 BEWLAY B P, WEIMER M, KELLY T, et al. The science, technology, and implementation of TiAl alloys in commercial aircraft engines[J]. MRS Online Proceedings Library (OPL)20131516(5): 49-58.
2 KOTHARI K, RADHAKRISHNAN R, WERELEY N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences201255(1): 1-16.
3 HOOD R, ASPINWALL D K, VOICE W. Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels[J]. CIRP Journal of Manufacturing Science and Technology201511(3): 36-44.
4 XIA Z W, SHAN C W, ZHANG M H, et al. Machinability of γ-TiAl: a review[J]. Chinese Journal of Aeronautics202336(7): 40-75.
5 BERANOAGIRRE A, LóPEZ DE LACALLE L N. Optimizing the turning of titanium aluminum alloys [J]. Advanced Materials Research2012498: 189-194
6 CHENG Y, YUAN Q, ZHANG B, et al. Student on turning force of γ-TiAl alloy [J]. The International Journal of Advanced Manufacturing Technology2019105(1): 2393-2402
7 PRIARONE P C, RIZZUTI S, SETTINERI L, et al. Effects of cutting angle, edge preparation, and nano structured coating on mill performance of a gamma titanium aluminum [J]. Journal of Materials Processing Technology2012212(12): 2619-2628
8 周丽, 崔超, 贾清, 等. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报201753(4): 505-512.
  ZHOU L, CUI C, JIA Q, et al. Experimental and finite element simulation of milling process for γ-TiAl intermetallics[J]. Acta Metallurgica Sinica201753(4): 505-512 (in Chinese).
9 MANTLE A L, ASPINWALL D K. Surface integrity of a high speed milled gamma titanium aluminide[J]. Journal of Materials Processing Technology2001118(1): 143-150.
10 PRIARONE P C, RIZZUTI S, ROTELLA G, et al. Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. International Journal of Advanced Manufacturing Technology201261(1-4): 25-33.
11 SIMAO J, ASPINWALL D K, DEWES R C, et al. High-speed milling and surface grinding of an orthorhombic TiAl alloy Ti-23Al-25Nb[J]. PubliCAT20045(3): 25-28.
12 乔帆, 任斐, 刘晓, 等. 难加工材料超低温切削的切屑形貌研究[J]. 机械制造201856(6): 63-66.
  QIAO F, REN F, LIU X, et al. Research on chip morphology in ultra-low temperature cutting of difficult to machine materials [J]. Mechanical Manufacturing201856 (6): 63-66 (in Chinese).
13 杨政 .近片层组织TiAl脆韧转变行为研究[D]. 合肥: 合肥工业大学, 2014
  YANG Z. Study on the brittle ductile transition behavior of TiAl near lamellar structure [D]. Hefei: Hefei University of Technology, 2014 (in Chinese).
14 UHLMANN E, HERTER S. Studies on conventional cutting of intermetallic nickel and titanium aluminides[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2006220(9): 1391-1398.
15 HOOD R, ASPINWALL D K, SAGE C, et al. High speed ball nose end milling of γ-TiAl alloys[J]. Intermetallics201332: 284-291.
16 ASPINWALL D K, MANTLE A L, CHAN W K, et al. Cutting temperatures when ball nose end milling γ-TiAl intermetallic alloys[J]. CIRP Annals201362(1): 75-78.
17 KLOCKE F, LUNG D, ARFT M. On high-speed turning of a third-generation gamma titanium aluminide[J]. The International Journal of Advanced Manufacturing Technology201365(1): 155-163.
18 仇文豪, 林琪超, 王相宇,等. 薄膜热电偶测温刀具研究现状[J]. 工具技术202256(8): 3-10.
  QIU W H, LIN Q C, WANG X Y, et al. Research status of thin film thermocouple temperature measuring tools [J]. Tool Technology202256(8): 3-10 (in Chinese).
19 刘其涛. Ti48Al2Cr2Nb合金铸件应力和变形的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
  LIU Q T. Research on numerical simulation of stress and deformation of Ti48Al2Cr2Nb alloy castings[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
20 BOLDYREV I S, SHCHUROV I A, NIKONOV A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces’ prediction[J]. Procedia Engineering2016150: 866-870.
21 岳彩旭. 金属切削过程有限元仿真技术[M]. 北京: 科学出版社, 2017.
  YUE C X. Finite element simulation technology of metal cutting process[M]. Beijing: Science Press, 2017 (in Chinese).
22 XU X, ZHANG J, OUTEIRO J, et al. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining[J]. Journal of Materials Processing Technology2020286:116834.
23 刘文韬, 刘战强. 钛合金Ti-6Al-4V高压冷却车削过程有限元分析[J]. 现代制造工程2018(10): 44-50.
  LIU W T, LIU Z Q. Finite element analysis of turning Ti-6Al-4V under high-pressure coolant[J]. Modern Manufacturing Engineering2018(10): 44-50 (in Chinese).
24 王兵. 高速切削材料变形及断裂行为对切屑形成的影响机理研究[D]. 济南: 山东大学, 2016.
  WANG B. Research on the mechanism of the influence of deformation and fracture behavior of high speed cutting materials on chip formation [D]. Jinan: Shandong University, 2016 (in Chinese).
25 武文革, 成云平, 刘丽娟, 等. 金属切削原理及刀具[M]. 北京: 电子工业出版社, 2019.
  WU W G, CHENG Y P, LIU L J, et al. principles of metal cutting and cutting tools [M]. Beijing: Electronic Industry Press, 2019 (in Chinese).
26 苏国胜. 高速切削锯齿形切屑形成过程与形成机理研究[D]. 济南: 山东大学, 2011.
  SU G S. Research on the formation process and mechanism of serrated chips in high-speed cutting [D]. Jinan: Shandong University, 2011 (in Chinese).
27 张红艳. 不同冷却策略下钛合金Ti-5553切屑卷曲与切屑形态研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
  ZHANG H Y. Research on chip curling and chip morphology of titanium alloy Ti-5553 under different cooling strategies [D]. Harbin: Harbin University of Science and Technology, 2020 (in Chinese).
Outlines

/