Reviews

Review and prospect of research on scramjet

  • Xiaoyong LIU ,
  • Mingfu WANG ,
  • Jianwen LIU ,
  • Xin REN ,
  • Xuan ZHANG
Expand
  • Beijing Power Machinery Institute,Beijing 100074,China
E-mail: 31suoban@sina.com

Received date: 2023-11-15

  Revised date: 2023-11-20

  Accepted date: 2023-11-24

  Online published: 2023-12-13

Supported by

National Level Project

Abstract

Since the 1950s, scramjet has been regarded as a goal of the hypersonic propulsion system in the aerospace field, and extensive research work has been conducted in both theory and practical technology. At the beginning of the 21st century, the United States made a series of technological breakthroughs close to practical applications, pushing the research and application of the scramjet technology to a new stage. This paper briefly describes the working principle of the scramjet, discusses the difficulties and latest progress in key technologies such as dual-mode working process, hypersonic compression flow, supersonic combustion, ultra-high temperature structure and thermal protection, ground test and numerical simulation, and expounds the understanding and suggestions on the development direction of key technologies such as wide speed range, repeatability, and higher Mach number of scramjet.

Cite this article

Xiaoyong LIU , Mingfu WANG , Jianwen LIU , Xin REN , Xuan ZHANG . Review and prospect of research on scramjet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529878 -529878 . DOI: 10.7527/S1000-6893.2023.29878

References

1 PRISELL E. The scramjet: A solution for hypersonic aerodynamic propulsion[C]∥Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
2 SEEBASS A R. Review and evaluation of the air force hypersonic technology program: AFSB TR-J-97-01-A[R]. Washington, D.C.: National Academy Press, 1998.
3 KILLACKEY J J, KATINSZKY E A, VUIGNER A A, et al. Thermal-structural design study of an airframe-integrated scramjet final report: NASA-CR-159039[R]. Washington, D.C.: NASA,1980.
4 刘小勇. 超燃冲压发动机技术[J]. 飞航导弹2003(2): 38-42.
  LIU X Y. Scramjet technology[J]. Winged Missiles Journal2003(2): 38-42 (in Chinese).
5 陈扶鼎. 2022年国外高超声速武器发展回顾[J]. 中国航天2023(2): 31-37.
  CHEN F D. Review of the development of hypersonic weapons abroad in 2022[J]. Aerospace China2023(2): 31-37 (in Chinese).
6 CONNORS J F, MEYERS R C. Design criteria for axisymmetric and two-dimensional supersonic inlets and exits: NACA TN-3589[R]. Washington, D.C.: NACA, 1956.
7 MOLDER S, MCGREGOR R J, PAISLEY T W. A comparison of three hypersonic air inlets [R]. Toronto: Ryerson Poly technical Institute, 1991.
8 MCCLINTON C R, RAUSCH D R. Hyper-X program status: AIAA-2001-1910[R]. Reston: AIAA, 2001.
9 MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators—Overview, status, and future plans[J]. Acta Astronautica200455(3-9): 619-630.
10 TREXLER C A. Performance of an inlet for an integrated scramjet concept[J]. Journal of Aircraft197411(9): 589-591.
11 TREXLER C, SOUDERS S. Design and performance at a local Mach number of 6 of an inlet for an integrated Scramjet concept: NASA TM-7944[R]. Washington, D. C.: NASA, 1975.
12 李怡庆, 周驯黄, 朱呈祥, 等. 曲锥前体/三维内转进气道一体化设计与分析[J].航空动力学报201833(1):87-96.
  LI Q Y, ZHOU X H, ZHU C X, et al. Integration design and analysis for curved conical forebody and three-dimensional inward turning inlet[J]. Journal of Aerospace Power201833(1): 87-96 (in Chinese).
13 BILLIG F. SCRAM—A supersonic combustion ramjet missile[C]∥Proceedings of the 29th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1993.
14 SMART M, WHITE J. Computational investigation of the performance and back-pressure limits of a hypersonic inlet[C]∥Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
15 MOLDER S, SZPIRO E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets19663(8): 1303-1304.
16 WALTRUP P J, BILLIG F S. Structure of shock waves in cylindrical ducts[J]. AIAA Journal197311(10): 1404-1408.
17 BEMENT D, STEVENS J, THOMPSON M. Measured operating characteristics of a rectangular combustor/inlet isolator[C]∥Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990.
18 王渊, 张堃元, 张林, 等. 非对称超声速来流下矩形转圆隔离段研究[J]. 推进技术201435(11): 1448-1454.
  WANG Y, ZHANG K Y, ZHANG L, et al. Investigation on rectangular-to-circular isolator under asymmetric incoming supersonic flow[J]. Journal of Propulsion Technology201435(11): 1448-1454 (in Chinese).
19 ZHANG K, MEIER G. Using R.C. method to study optimum compression surface under non-uniform 2-D supersonic flow condition[C]∥Proceedings of the 12th Applied Aerodynamics Conference. Reston: AIAA, 1994.
20 ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal201452(4): 767-776.
21 吴颖川, 姚磊, 杨大伟, 等. 曲面乘波进气道非设计状态性能研究[J]. 实验流体力学201529(4): 26-31.
  WU Y C, YAO L, YANG D W, et al. Off-design performance of osculating curved cone inlet[J]. Journal of Experiments in Fluid Mechanics201529(4): 26-31 (in Chinese).
22 YU X F, PAN X, ZHENG J L, et al. Thermodynamic spectrum of direct precooled airbreathing propulsion[J]. Energy2017135: 777-787.
23 SIEBENHAAR A, BOGAR T. The impact of round combustors on TBCC propulsion and hypersonic cruise vehicles[C]∥Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
24 FAULKNER R. The evolution of the HySET hydrocarbon fueled scramjet engine: AIAA-2003-7005[R]. Reston: AIAA, 2003.
25 孙强, 王健, 马会民. X-51A超燃冲压发动机的研制历程[J]. 飞航导弹2011(1): 67-71.
  SUN Q, WANG J, MA H M. Development of X-51A scramjet[J]. Aerodynamic Missile Journal2011(1): 67-71 (in Chinese).
26 BILLIG F, BAURLE R, TAM C J, et al. Design and analysis of streamline traced hypersonic inlets[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
27 CURRAN E T, MURTHY S N B. High-speed flight propulsion systems[M]. Reston: AIAA, 1991.
28 BREIDENTHAL R E. Sonic eddy-A model for compressible turbulence[J]. AIAA Journal199230(1): 101-104.
29 WEBER R J, MACKAY J S. An analysis of ramjet engines using supersonic combustion: NACA-TN-4386[R]. Washington, D.C.: NACA, 1958.
30 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展201343(5): 449-470.
  YU G, FAN X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics201343(5): 449-470 (in Chinese).
31 CURRAN E T, MURTHY S N B. Scramjet propulsion[M]. Reston: AIAA, 2000.
32 BRINK D F, CHOW W L. Two-dimensional jet mixing with a pressure gradient[J]. Journal of Applied Mechanics197542(1): 55-60.
33 BROWAND F K. The structure of the turbulent mixing layer[J]. Physica D: Nonlinear Phenomena198618(1-3): 135-148.
34 CROWE C T, CHUNG J N, TROUTT T R. Particle mixing in free shear flows[J]. Progress in Energy and Combustion Science198814(3): 171-194.
35 MARCU B, MEIBURG E, RAJU N. The effect of streamwise braid vortices on the particle dispersion in a plane mixing layer. II. Nonlinear particle dynamics[J]. Physics of Fluids19968(3): 734-753.
36 MARCU B, MEIBURG E. Three-dimensional features of particle dispersion in a nominally plane mixing layer[J]. Physics of Fluids19968(9): 2266-2268.
37 MARCU B, MEIBURG E. The effect of streamwise braid vortices on the particle dispersion in a plane mixing layer. I. Equilibrium points and their stability[J]. Physics of Fluids19968(3): 715-733.
38 BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion, Explosion and Shock Waves200642(4): 463-471.
39 ROUTOVSKY V. Autoignition study on kerosene combustion in supersonic flow: F61708-96-WO286[R]. Moscow: Moscow State Aviation Institute, 1997.
40 GOKULAKRISHNAN P, GAINES G, KLASSEN M, et al. Autoignition of aviation fuels: experimental and modeling study[C]∥Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2007.
41 TAKITA K, MASUYA G, SATO T, et al. Effects of addition of radicals supplied by plasma torch on burning velocity[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999.
42 COLKET M B III, SPADACCINI L J. Scramjet fuels autoignition study[J]. Journal of Propulsion and Power200117(2): 315-323.
43 SEINER J, DASH S, KENZAKOWSKI D. Historical survey on enhanced mixing in scramjet engines[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
44 YAKAR B A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows[D]. Stanford: Stanford University, 2000.
45 STALLINGS R L, WILCOX E J. Experimental cavity pressure distributions at supersonic speeds: NASA-TP-2683[R]. Washington, D.C.: NASA, 1987.
46 ROUDAKOV A S, SEMENOV V L, HICKS J. Recent flight test results of the joint CIAM-NASA Mach 6.5 scramjet flight program: AIAA-1998-1643[R]. Reston: AIAA, 1998.
47 VINOGRADOV V, KOBIGSKY S A, PETROV M. Experimental investigation of liquid carbonhydrogen fuel combustion in channel at supersonic velocities: AIAA-1992-3429[R]. Reston: AIAA, 1992.
48 KANDA T. Study of the intensive combustion in the scramjet engine[C]∥Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
49 GRUBER M R. An experimental investigation of transverse injection from circular and elliptical nozzles into a supersonic crossflow[D]. Urbana-Champaign: University of Illinois, 1996.
50 VANLERBERGHE W M, SANTIAGO J G, DUTTON J C, et al. Mixing of a sonic transverse jet injected into a supersonic flow[J]. AIAA Journal200038: 470-479.
51 BAURLE R, TAM C J, DASGUPTA S. Analysis of unsteady cavity flows for scramjet applications[C]∥Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000.
52 DAVIS D L. Numerical analysis of two and three dimensional recessed flame holders for scramjet applications[D]. Wright-Patterson AFB: Air Force Institute of Technology, 1996.
53 FAN T, TIAN M, EDWARDS J, et al. Validation of a hybrid Reynolds-averaged/large-eddy simulation method for simulating cavity flameholder configurations[C]∥ Proceedings of the 15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001.
54 BEN-YAKAR A, HANSON R. Supersonic combustion of cross-flow jets and the influence of cavity flame-holders[C]∥Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
55 YU K, WILSON K, SCHADOW K. Effect of flame-holding cavities on supersonic combustion performance[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999.
56 MORRISON C Q, CAMPBELL R L, EDELMAN R B, et al. Hydrocarbon fueled dual-mode ramjet/scramjet concept evaluation: ISABE 1997-7053[R]. Indianapolis: ISABE, 1997.
57 RASMUSSEN C, DRISCOLL J, DONBAR J, et al. Blowout limits of supersonic cavity-stabilized flames[C]∥Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
58 YU G. Characterization of kerosene combustion in supersonic flow using effervescent atomization: AIAA-2002-5225[R]. Reston: AIAA, 2002.
59 LI M L, ZHOU J, GENG H, et al. Investigations on function of cavity in supersonic combustion using OH PLIF[C]∥Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
60 MCCLINTON C, ROUDAKOV A, SEMENOV V, et al. Comparative flow path analysis and design assessment of an axisymmetric hydrogen fueled scramjet flight test engine at a Mach number of 6.5[C]∥Proceedings of the Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996.
61 CHOI Y, YOST M F, LERNER E W, et al. Scramjet performance computed for a JP-7-fueled generic X-51 vehicle[J]. Journal of Propulsion and Power202238(3): 348-358.
62 FREEBORN A, KING P, GRUBER M. Characterization of pylon effects on a scramjet cavity flameholder flowfield[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
63 GHODKE C, CHOI J, SRINIVASAN S, et al. Large eddy simulation of supersonic combustion in a cavity-strut flameholder[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
64 HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA,1994.
65 ANDREADIS D. Scramjets integrate air and space[R]. College Park: American Institute of Physics, 2004.
66 叶中元, 黄伏军, 董建明. 多模态冲压发动机提高性能的技术途径[J]. 推进技术200122(6): 441-445, 450.
  YE Z Y, HUANG F J, DONG J M. Development and innovation of multi-mode ramjet technology[J]. Journal of Propulsion Technology200122(6): 441-445, 450 (in Chinese).
67 王兰, 邢建文, 郑忠华, 等. 超燃冲压发动机内流性能的一维评估[J]. 推进技术200829(6): 641-645.
  WANG L, XING J W, ZHENG Z H, et al. One-dimensional evaluation of the scramjet flowpath performance[J]. Journal of Propulsion Technology200829(6): 641-645 (in Chinese).
68 任鑫, 罗春钦, 董建明, 等. 超燃冲压发动机性能的准二维计算方法[J]. 推进技术201334(4): 457-462.
  REN X, LUO C Q, DONG J M, et al. Quasi-two-dimensional evaluation of the scramjet performance[J]. Journal of Propulsion Technology201334(4): 457-462 (in Chinese).
69 罗世彬, 罗文彩, 王振国. 基于并联协作混合遗传算法的高超声速巡航飞行器一体化优化设计研究[J]. 宇航学报200425(1): 28-34.
  LUO S B, LUO W C, WANG Z G. Parallel collaborative hybrid genetic algorithm applied to integrated design optimization of hypersonic cruise vehicle[J]. Journal of Astronautics200425(1): 28-34 (in Chinese).
70 吴先宇, 李小山, 丁猛, 等. 超燃冲压发动机燃烧室构型优化的试验研究[J]. 国防科技大学学报200729(5): 1-4, 47.
  WU X Y, LI X S, DING M, et al. Experimental study of the configuration optimization of scramjet combustor[J]. Journal of National University of Defense Technology200729(5): 1-4, 47 (in Chinese).
71 王友利, 才满瑞. 美国X-51A项目总结与前景分析[J]. 飞航导弹2014(3): 17-21.
  WANG Y L, CAI M R. Summary and prospect analysis of American X-51A project[J]. Aerodynamic Missile Journal2014(3): 17-21 (in Chinese).
72 CURRAN E T, STULL F D. The utilization of supersonic combustion ramjet systems at low Mach numbers: RTD-TDR-63-4097[R]. Wright-Patterson AFB: Aero Propulsion Laboratory, 1964.
73 MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight: AIAA-2005-3336[R]. Reston: AIAA, 2005.
74 MAYER D. X-51A waverider achieves breakthrough in final flight[R]. Washington, D.C.: U. S. Department of Defense Information, 2013.
75 MA J, LIANG J L. Development trends and directions of liquid ramjet/scramjet technology[J]. Journal of Rocket Propulsion201137(4): 12-17 (in Chinese).
76 REN J W, TAN Y H. Thermal protection techniques of ramjet combustor[J]. Journal of Rocket Propulsion200632(4): 38-42.
77 VAN WIE D M, DREWRY D G Jr, KING D E, et al. The hypersonic environment: Required operating conditions and design challenges[J]. Journal of Materials Science200439(19): 5915-5924.
78 任富建, 刘红娟, 沈毅. C/C复合材料高温抗氧化性的研究进展[J]. 中国陶瓷工业200714(5): 28-31.
  REN F J, LIU H J, SHEN Y. Progress in the study on oxidation resistance of carbon/carbon composites at high temperature[J]. China Ceramic Industry200714(5): 28-31 (in Chinese).
79 葛毅成, 易茂中, 黄伯云. 溶液浸渍和溶胶浸渍法对C/C复合材料抗氧化性能的影响[J]. 粉末冶金材料科学与工程20038(2): 156-161.
  GE Y C, YI M Z, HUANG B Y. Effect of anti-oxidation on C/C composites by sol-soaking and solution-soaking[J]. Materials Science and Engineering of Powder Metallargy20038(2): 156-161 (in Chinese).
80 曾燮榕, 李贺军, 张建国, 等. 碳/碳复合材料防护涂层的抗氧化行为研究[J]. 复合材料学报200017(2): 42-45.
  ZENG X R, LI H J, ZHANG J G, et al. Effect of microstructure and component on oxidation resistance of MoSi2-SiC multilayer ceramic coating[J]. Acta Materiae Compositae Sinica200017(2): 42-45 (in Chinese).
81 侯党社, 李克智, 李贺军, 等. C/C复合材料SiC-TaSi2/MoSi2抗氧化复合涂层研究[J]. 金属学报200844(3): 331-335.
  HOU D S, LI K Z, LI H J, et al. Study of the SiC-TaSi2/MoSi2 multilayer oxidation protective coating for carbon/carbon composite[J]. Acta Metallurgica Sinica200844(3): 331-335 (in Chinese).
82 李贺军. 炭/炭复合材料[J]. 新型炭材料200116(2): 79-80.
  LI H J. Carbon/carbon composites[J]. New Carbon Materials200116(2): 79-80 (in Chinese).
83 ALFANO D. Spectroscopic properties of carbon fibre reinforced silicon carbide composites for aerospace applications[M]∥GERHARDT R. Properties and Applications of Silicon Carbide. London: IntechOpen, 2011: 231-250.
84 HEIDENREICH B. Carbon fiber reinforced SiC materials based on melt infiltration[C]∥6th International Conference on High Temperature Ceramic Matrix Composites, 2007.
85 邹武, 张康助, 张立同. 陶瓷基复合材料在火箭发动机上的应用[J]. 固体火箭技术200023(2): 60-64, 68.
  ZOU W, ZHANG K Z, ZHANG L T. Application of ceramic matrix composite to rocket motor[J]. Journal of Solid Rocket Technology200023(2): 60-64, 68 (in Chinese).
86 ZHANG X H, HU P, HAN J C. Structure evolution of ZrB2-SiC during the oxidation in air[J]. Journal of Materials Research200823(7): 1961-1972.
87 闫联生, 王涛, 邹武, 等. 碳/碳化硅复合材料快速成型工艺研究[J]. 宇航材料工艺199929(3): 38-41, 45.
  YAN L S, WANG T, ZOU W, et al. Study on rapid prototyping technology of carbon/silicon carbide composites[J]. Aerospace Materials & Technology199929(3): 38-41, 45 (in Chinese).
88 SALAKHUTDINOV G M. Development of methods of cooling liquid propellant rocket engines (ZhRDs), 1903-1970[M]. SKOOG A I. History of Rocketry and Astronautics. San Diego: American Astronautics Society, 1990: 115-122.
89 程泽源, 朱剑琴, 金钊. 吸热型碳氢燃料RP-3替代模型研究[J]. 航空动力学报201631(2): 391-398.
  CHENG Z Y, ZHU J Q, JIN Z. Study on surrogate model of endothermic hydrocarbon fuel RP-3[J]. Journal of Aerospace Power201631(2): 391-398 (in Chinese).
90 MAURICE L Q, LANDER H, EDWARDS T, et al. Advanced aviation fuels: A look ahead via a historical perspective[J]. Fuel200180(5): 747-756.
91 STIEGEMEIER B, MEYER M, TAGHAVI R. A thermal stability and heat transfer investigation of five hydrocarbon fuels[C]∥Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
92 王彦红, 李素芬, 东明. 方形再生冷却通道内超临界正癸烷湍流传热数值研究[J]. 推进技术201536(11): 1669-1676.
  WANG Y H, LI S F, DONG M. Numerical study on turbulent heat transfer of supercritical n-decane in a square regenerative cooling channel[J]. Journal of Propulsion Technology201536(11): 1669-1676 (in Chinese).
93 姜蕾, 刘朝晖, 毕勤成, 等. 碳氢燃料变压力过程中传热研究[J]. 推进技术201435(7): 965-972.
  JIANG L, LIU Z H, BI Q C, et al. Heat transfer of hydrocarbon fuel during transient pressure[J]. Journal of Propulsion Technology201435(7): 965-972 (in Chinese).
94 EDWARDS T. Cracking and deposition behavior of supercritical hydrocarbon aviation fuels[J]. Combustion Science and Technology2006178(1-3): 307-334.
95 张其翼, 魏微, 周灏, 等. 碳氢燃料低压裂解特性[J]. 燃烧科学与技术201521(5): 383-386.
  ZHANG Q Y, WEI W, ZHOU H, et al. Pyrolysis characteristics of hydrocarbon fuel under low pressure[J]. Journal of Combustion Science and Technology201521(5): 383-386 (in Chinese).
96 STIEGEMEIER B, MEYER M, TAGHAVI R. A thermal stability and heat transfer investigation of five hydrocarbon fuels[C]∥Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
97 ZHANG C B, XU G Q, GAO L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. The Journal of Supercritical Fluids201272: 90-99.
98 王宁. 超燃冲压发动机再生冷却通道内煤油流动与传热特性研究[D]. 长沙: 国防科学技术大学, 2014.
  WANG N. Study on flow and heat transfer characteristics of kerosene in regenerative cooling channel of scramjet[D].Changsha: National University of Defense Technology, 2014 (in Chinese).
99 RUAN B, MENG H, YANG V. Simplification of pyrolytic reaction mechanism and turbulent heat transfer of n-decane at supercritical pressures[J]. International Journal of Heat and Mass Transfer201469: 455-463.
100 LIU X Y, YANG Z Q, MIAO R P, et al. Experimental study on flow excursion instability of supercritical hydrocarbon fuel in scramjet regenerative cooling parallel channels[J]. Chinese Journal of Aeronautics202336(1): 201-215.
101 郭永胜, 林瑞森. 吸热型碳氢燃料的结焦研究Ⅰ含硫抑制剂[J]. 燃料化学学报200533(3): 289-292.
  GUO Y S, LIN R S. Study on coking of endothermic hydrocarbon fuels Ⅰ Sulf-inhibitor[J]. Journal of Fuel Chemistry and Technology200533(3): 289-292 (in Chinese).
102 BALSTER L M, CORPORAN E, DEWITT M J, et al. Development of an advanced, thermally stable, coal-based jet fuel[J]. Fuel Processing Technology200889(4): 364-378.
103 HENEGHAN S P, ZABARNICK S, BALLAL D R, et al. JP-8+100: The development of high-thermal-stability jet fuel[J]. Journal of Energy Resources Technology1996118(3): 170-179.
104 GUO W, ZHANG X W, LIU G Z, et al. Roles of hydrogen donors and organic selenides in inhibiting solid deposits from thermal stressing of n-dodecane and Chinese RP-3 jet fuel[J]. Industrial & Engineering Chemistry Research200948(18): 8320-8327.
105 MAURICE L, CORPORAN E, MINUS D, et al. Smart fuels-‘Controlled’ chemically reacting[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999.
106 HUANG B, SHRESTHA U, DAVIS R J, et al. Endothermic pyrolysis of JP-10 with and without zeolite catalyst for hypersonic applications[J]. AIAA Journal201856(4): 1616-1626.
107 JIANG R P, LIU G Z, ZHANG X W. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J]. Energy & Fuels201327(5): 2563-2577.
108 KORABELNIKOV A, KURANOV A. Thermochemical conversion of hydrocarbon fuel for the AJAX concept[C]∥Proceedings of the 30th Plasmadynamic and Lasers Conference. Reston: AIAA, 1999.
109 JACKSON K, CORPORAN E, BUCKLEY P, et al. Test results of an endothermic fuel reactor: AIAA-1995-6028[R]. Reston: AIAA, 1995.
110 LEE P H, LEE S Y, KWON J Y, et al. Thermal cycling behavior and interfacial stability in thick thermal barrier coatings[J]. Surface and Coatings Technology2010205(5): 1250-1255.
111 VASSEN R, STUKE A, ST?VER D. Recent developments in the field of thermal barrier coatings[J]. Journal of Thermal Spray Technology200918(2): 181-186.
112 MILLER R A. Current status of thermal barrier coatings—An overview[J]. Surface and Coatings Technology198730(1): 1-11.
113 CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society200424(1): 1-10.
114 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展200928(): 18-26.
  GUO H B, GONG S K, XU H B. Research progress of thermal barrier coating technology for advanced aero-engines[J]. Materials China200928(Sup 2): 18-26 (in Chinese).
115 ZHU D M, MILLER R A. Development of advanced low conductivity thermal barrier coatings[J]. International Journal of Applied Ceramic Technology20041(1): 86-94.
116 冀晓鹃, 宫声凯, 徐惠彬, 等. 添加稀土元素对热障涂层YSZ陶瓷层晶格畸变的影响[J]. 航空学报200728(1): 196-200.
  JI X J, GONG S K, XU H B, et al. Influence of rare earth elements additions in YSZ ceramic coatings of thermal barrier coatings on lattice distortion[J]. Acta Aeronautica et Astronautica Sinica200728(1): 196-200 (in Chinese).
117 冀晓鹃. 稀土氧化物掺杂改性热障涂层用YSZ陶瓷材料研究[D]. 北京: 北京航空航天大学, 2007.
  JI X J. Study on YSZ ceramic materials for rare earth oxide doped modified thermal barrier coating[D]. Beijing: Beihang University, 2007 (in Chinese).
118 ZHANG Y L, GUO L, YANG Y P, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics201225(6): 948-953.
119 陈玉峰, 王广海, 郑日恒, 等. 一种超高温隔热材料及其制备方法: CN103626472B[P]. 2015-10-28.
  CHEN Y F, WANG G H, ZHENG R H, et al. Ultra-high-temperature heat-insulating material and preparation method thereof: CN103626472B[P]. 2015-10-28 (in Chinese).
120 陈玉峰, 张世超, 郑日恒, 等. 带有辐射屏蔽层的纳米氧化硅隔热材料及其制备方法: CN103693938B[P]. 2016-03-23.
  CHEN Y F, ZHANG S C, ZHENG R H, et al. Nano silicon oxide heat-insulating material with radiation shield layer and preparation method thereof: CN103693938B [P]. 2016-03-23 (in Chinese).
121 韩丁, 郑世刚, 孙现凯, 等. 氧化锆纤维高温隔热材料传热性能研究[J]. 陶瓷2022(7): 9-12.
  HAN D, ZHENG S G, SUN X K, et al. Study on heat transfer performance of zirconia ceramic fiber thermal insulation material at high temperature[J]. Ceramics2022(7): 9-12 (in Chinese).
122 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷201738(5): 311-390.
  CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics201738(5): 311-390 (in Chinese).
123 史超. 冲压发动机地面试验技术及试验能力述评[J]. 火箭推进202147(1): 1-12.
  SHI C. Review of ramjet ground-test facilities and relevant technology development[J]. Journal of Rocket Propulsion202147(1): 1-12 (in Chinese).
124 ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics199123: 261-304.
125 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J]. 力学进展201242(1): 81-90.
  XU J L. The development of the PIV experimental study of the super/hypersonic flowfield[J]. Advances in Mechanics201242(1): 81-90 (in Chinese).
126 HANSON R K. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems[J]. Proceedings of the Combustion Institute201133(1): 1-40.
127 陈帆, 陶波, 黄斌, 等. 基于TDLAS的脉冲爆震火箭发动机尾焰参数测量[J]. 燃烧科学与技术201319(6): 501-506.
  CHEN F, TAO B, HUANG B, et al. Measurement of PDRE plume based on TDLAS technology[J]. Journal of Combustion Science and Technology201319(6): 501-506 (in Chinese).
128 PENG J B, CAO Z, YU X, et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decomposition[J]. International Journal of Hydrogen Energy202045(23): 13108-13118.
129 吴戈, 李韵, 万明罡, 等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学202034(3): 70-77.
  WU G, LI Y, WAN M G, et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics202034(3): 70-77 (in Chinese).
130 ZETTERVALL N, FUREBY C. A computational study of ramjet, scramjet and dual-mode ramjet combustion in combustor with a cavity flameholder[C]∥Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
131 WEPLER U, KOSCHEL W. Numerical investigation of turbulent reacting flows in a scramjet combustor model[C]∥Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
132 杨事民, 张建良. 超燃冲压发动机燃烧室流场数值模拟[J]. 航空发动机200935(4): 25-28, 11.
  YANG S M, ZHANG J L. Numerical simulation of flow field of a scramjet combustor[J]. Aeroengine200935(4): 25-28, 11 (in Chinese).
133 牛东圣, 侯凌云. 碳氢燃料超声速燃烧的火焰面模型模拟[J]. 工程热物理学报201334(10): 1986-1989.
  NIU D S, HOU L Y. Numerical simulation of hydrocarbon fuel supersonic combustion using flamelet modeling[J]. Journal of Engineering Thermophysics201334(10): 1986-1989 (in Chinese).
134 樊孝峰, 王江峰, 赵法明, 等. 煤油简化化学反应机理在超燃数值模拟中的应用[J]. 空气动力学学报201836(6): 974-982.
  FAN X F, WANG J F, ZHAO F M, et al. Applications of reduced reaction mechanism for numerical calculations in supersonic combustion of kerosene fuel[J]. Acta Aerodynamica Sinica201836(6): 974-982 (in Chinese).
135 樊孝峰, 王江峰, 赵法明, 等. 气态煤油超声速燃烧简化化学反应模型[J]. 国防科技大学学报201941(1): 48-57.
  FAN X F, WANG J F, ZHAO F M, et al. Reduced kinetic model for supersonic combustion of vaporized kerosene[J]. Journal of National University of Defense Technology201941(1): 48-57 (in Chinese).
136 陈兵, 张岩, 徐旭. 基于火焰面模型的超声速湍流燃烧数值模拟研究[J]. 推进技术201334(12): 1650-1658.
  CHEN B, ZHANG Y, XU X. Numerical simulation of supersonic turbulent combustion flows based on flamelet model[J]. Journal of Propulsion Technology201334(12): 1650-1658 (in Chinese).
137 刘建文, 熊生伟, 马雪松. 基于DRG和QSSA方法的煤油详细燃烧机理简化[J]. 推进技术201132(4): 525-529, 549.
  LIU J W, XIONG S W, MA X S. Reduction of kerosene detailed combustion reaction mechanism based on DRG and QSSA[J]. Journal of Propulsion Technology201132(4): 525-529, 549 (in Chinese).
138 ARIBIKE D S, SUSU A A. Kinetics and mechanism of the thermal cracking of n-heptane[J]. Thermochimica Acta1988127: 247-258.
139 ARIBIKE D S, SUSU A A. Mechanistic modeling of the pyrolysis of n-heptane[J]. Thermochimica Acta1988127: 259-273.
140 HERBINET O, MARQUAIRE P M, BATTIN-LECLERC F, et al. Thermal decomposition of n-dodecane: Experiments and kinetic modeling[J]. Journal of Analytical and Applied Pyrolysis200778(2): 419-429.
141 ZHONG F Q, FAN X J, YU G, et al. Thermal cracking of aviation kerosene for scramjet applications[J]. Science in China Series E: Technological Sciences200952(9): 2644-2652.
142 MCCLINTON C R. Hypersonic technology past, present and future[R]. 2002.
143 CULBERTSON A S, BHAT B. The National Aerospace Initiative (NAI): Technologies for responsive space access[R]. Washington, D.C.: NASA, 2003.
144 SIEBENHAAR A, BOGAR T. Integration and vehicle performance assessment of the aerojet “TriJet” combined-cycle engine[C]∥Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
145 ROBERTS K, WILSON D. Analysis and design of a hypersonic scramjet engine with a transition Mach number of 4.00[C]∥Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
146 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术201440(7): 2024-2038.
  WU Y, LI Y H. Progress in research of plasma-assisted flow control, ignition and combustion[J]. High Voltage Engineering201440(7): 2024-2038 (in Chinese).
147 许国梁, 陈帅, 吴春田, 等. 乙醇辅助碳氢燃料催化吸热反应[J]. 含能材料202028(5): 416-423.
  XU G L, CHEN S, WU C T, et al. Ethanol-assisted catalytic endothermic reaction of hydrocarbon fuel[J]. Chinese Journal of Energetic Materials202028(5): 416-423 (in Chinese).
148 QIN J, ZHOU W X, BAO W, et al. Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet[J]. International Journal of Hydrogen Energy201035(1): 356-364.
149 QIN J, BAO W, ZHOU W X, et al. Thermal management system performance analysis of hypersonic vehicle based on closed Brayton cycle[C]∥Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008.
150 CHENG K L, QIN J, SUN H C, et al. Performance assessment of a closed-recuperative-Brayton-cycle based integrated system for power generation and engine cooling of hypersonic vehicle[J]. Aerospace Science and Technology201987: 278-288.
151 KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials2014455(1-3): 387-397.
152 LACOMBE A, SPRIET P, HABAROU G, et al. Ceramic matrix composites to make breakthroughs in aircraft engine performance[C]∥Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
153 王鸣, 董志国, 张晓越, 等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J]. 航空制造技术2014(6): 10-13.
  WANG M, DONG Z G, ZHANG X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine[J]. Aeronautical Manufacturing Technology2014(6): 10-13 (in Chinese).
154 岳连捷, 张旭, 张启帆, 等. 高马赫数超燃冲压发动机技术研究进展[J]. 力学学报202254(2): 263-288.
  YUE L J, ZHANG X, ZHANG Q F, et al. Research progress on high-mach-number scramjet engine technologies[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 263-288 (in Chinese).
155 URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics201850: 593-627.
156 WALTRUP P J. Upper bounds on the flight speed of hydrocarbon-fueled scramjet-powered vehicles[J]. Journal of Propulsion and Power200117(6): 1199-1204.
157 LANDER H, NIXON A C. Endothermic fuels for hypersonic vehicles[J]. Journal of Aircraft19718(4): 200-207.
158 WANG Y Y, CHENG K L, TANG J F, et al. Analysis of the maximum flight Mach number of hydrocarbon-fueled scramjet engines under the flight cruising constraint and the combustor cooling requirement[J]. Aerospace Science and Technology202098: 105594.
159 LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets - Tunnel vs flight[J]. Acta Astronautica2018146: 103-110.
160 PAQUETTE E. Cooled CMC structures for scramjet engine flowpath components[C]∥Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
161 BOUQUET C, FISCHER R, LUC-BOUHALI A, et al. Fully ceramic composite heat exchanger qualification for advanced combustion chambers[C]∥Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
Outlines

/