ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail
Received date: 2023-09-21
Revised date: 2023-09-28
Accepted date: 2023-11-27
Online published: 2023-12-13
Supported by
National Natural Science Foundation of China(12372288)
The future development of advanced high-performance aircraft not only raises an urgent demand for significant improvement in aerodynamic performance such as the lift-to-drag ratio and maximum lift coefficient, but also faces more stringent design constraints and requirements of various disciplines such as overall/structural/stealth/flight control. According to the overall top-level aircraft design and engineering applications, we conduct an unconventional blended-wing-body swallow tail aerodynamic layout design optimization and performance analysis based on the new blended-wing-body integration design idea of large effective volume stealth fuselage, high lift and large aspect ratio stealth natural laminar flow wing, and efficient simultaneous geometric and aerodynamic integration design of fuselage/wing, and rear body/swallow tail. The results of CFD calculation and the wind tunnel test show that at Mach number Ma=0.194, Reynolds number Re=5.2 ×105, the maximum lift-to-drag ratio is about 31.2, and the aerodynamic performance is excellent. Meanwhile, the basic longitudinal/transverse aerodynamic characteristics and swallow tail rudder effect can meet the flight control requirements. The transition infrared measurement test results show that the free transition position is in good agreement with the laminar airfoil/wing aerodynamic design theory. The surface flow separation wire test results show that the swallow tail is significantly affected by the wing downwash flow, with further research to be conducted in the future.
Liu LIU , Xianhong XIANG , Yufei ZHANG , Haixin CHEN , Chuang WEI , Jian ZHU , Pu YANG . A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629630 -629630 . DOI: 10.7527/S1000-6893.2023.29630
1 | 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. |
FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). | |
2 | 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术, 2007, 50(8): 38-41. |
CUI E J, BAI P, YANG J M. Development path of intelligent morphing aircraft[J]. Aeronautical Manufacturing Technology, 2007, 50(8): 38-41 (in Chinese). | |
3 | HILEMAN J, SPAKOVSZKY Z, DRELA M, et al. Airframe design for “silent aircraft”[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
4 | XIANG X H, YUAN L, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
5 | 张明辉, 陈真利, 顾文婷, 等. 翼身融合布局民机高低速协调设计[J]. 航空学报, 2019, 40(9): 623052. |
ZHANG M H, CHEN Z L, GU W T, et al. Tradeoff design of high and low speed performance for blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623052 (in Chinese). | |
6 | 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1): 123176. |
FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123176 (in Chinese). | |
7 | 李沛峰, 张彬乾, 陶于金, 等. 翼身融合布局中央机体翼型设计研究[J]. 西北工业大学学报, 2018, 36(2): 203-210. |
LI P F, ZHANG B Q, TAO Y J, et al. Center body airfoil design for blended wing body configuration[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 203-210 (in Chinese). | |
8 | 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289. |
JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289 (in Chinese). | |
9 | 邓海强, 余雄庆. 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报, 2014, 35(5): 1200-1208. |
DENG H Q, YU X Q. Configuration optimization of subsonic blended wing body UAV conceptual design[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1200-1208 (in Chinese). | |
10 | 钟园, 陈勇, 陈真利, 等. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019, 40(9): 623050. |
ZHONG Y, CHEN Y, CHEN Z L, et al. Design of slat of blended-wing-body low speed testing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623050 (in Chinese). | |
11 | 张明辉, 陈真利, 毛俊, 等. 翼身融合布局民机克鲁格襟翼设计[J]. 航空学报, 2019, 40(9): 623048. |
ZHANG M H, CHEN Z L, MAO J, et al. Design of Krueger flap for civil aircraft with blended-wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623048 (in Chinese). | |
12 | 夏明, 袁昌运, 巩文秀, 等. 鸭翼对BWB飞机低速纵向气动特性的影响[J]. 空气动力学学报, 2020, 38(5): 1004-1010. |
XIA M, YUAN C Y, GONG W X, et al. Low-speed longitudinal aerodynamic influence of canard on BWB aircraft[J]. Acta Aerodynamica Sinica, 2020, 38(5): 1004-1010 (in Chinese). | |
13 | 丛斌, 王立新. 飞翼布局飞机侧风起降特性[J]. 北京航空航天大学学报, 2017, 43(5): 1023-1030. |
CONG B, WANG L X. Crosswind take-off and landing characteristics of flying wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 1023-1030 (in Chinese). | |
14 | 张乐, 周洲, 许晓平. 隐身反设计下飞翼布局气动与隐身综合设计[J]. 哈尔滨工业大学学报, 2017, 49(10): 22-30. |
ZHANG L, ZHOU Z, XU X P. Integrated design on aerodynamic and stealthy of flying wing unmanned aerial vehicle based on stealthy inverse design method[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 22-30 (in Chinese). | |
15 | SARGEANT M A, HYNES T P, GRAHAM W R, et al. Stability of hybrid-wing-body-type aircraft with centerbody leading-edge carving[J]. Journal of Aircraft, 2010, 47(3): 970-974. |
16 | HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for silent fuel-efficient aircraft[J]. Journal of Aircraft, 2010, 47(3): 956-969. |
17 | HILEMAN J, SPAKOVSZKY Z, DRELA M, et al. Aerodynamic and aeroacoustic three-dimensional design for a “silent” aircraft[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
18 | 向先宏,杨晓华,王海波,等 .未来高空长航时无人机典型工程气动问题浅析[C]∥中国航空学会无人机空气动力问题研讨会,2021. |
XIANG X H, YANG X H, WANG H B, et al. A brief discussion of aerodynamic research of high altitude long endurance future vehicle[C]∥The UAV Aerodynamics Conference of Chinese Society of Aeronautics and Astronautics, 2021. | |
19 | 向先宏, 刘柳, 李庆, 等. 一种翼身融合燕尾形尾翼气动布局及设计方法: CN115716526A[P]. 2023-02-28. |
XIANG X, LIU L, LI Q, et al. Aerodynamic layout and design method of wing body fused swallow-tail-shaped empennage: CN115716526A[P]. 2023-02-28 (in Chinese). | |
20 | 魏闯, 张铁军, 钱战森. 基于e N 转捩预测方法的增升装置失速特性数值模拟研究[J]. 航空科学技术, 2019, 30(9): 33-39. |
WEI C, ZHANG T J, QIAN Z S. Number simulations on stall characteristic for high-lift configuration based on e N transition method[J]. Aeronautical Science & Technology, 2019, 30(9): 33-39 (in Chinese). | |
21 | LI H M, REN Y J, TANG H L, et al. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software[C]∥Proceedings of the 46th AIAA Fluid Dynamics Conference. Reston: AIAA, 2016. |
22 | MARCHMAN J F III, ABTAHI A. Aerodynamics of an aspect ratio 8 wing at low Reynolds numbers[J]. Journal of Aircraft, 1985, 22(7): 628-634. |
23 | LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1842-1854. |
24 | JI Q, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization of a high-lift system with adaptive dropped hinge flap[J]. Chinese Journal of Aeronautics, 2022, 35(11): 191-208. |
25 | ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43: 152-164. |
26 | 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002. |
FAN J C. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002 (in Chinese). |
/
〈 |
|
〉 |