Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft

A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail

  • Liu LIU ,
  • Xianhong XIANG ,
  • Yufei ZHANG ,
  • Haixin CHEN ,
  • Chuang WEI ,
  • Jian ZHU ,
  • Pu YANG
Expand
  • 1.CASIC UAV Technology Research Institute,Beijing 100074,China
    2.School of Aerospace Engineering,Tsinghua University,Beijing 100084,China
    3.Aviation Key Laboratory of Science and Technology on High Speed and High Reynolds Number Aerodynamic Force Research,AVIC Aerodynamics Research Institute,Shenyang 110034,China
E-mail: 2007xxhong@163.com

Received date: 2023-09-21

  Revised date: 2023-09-28

  Accepted date: 2023-11-27

  Online published: 2023-12-13

Supported by

National Natural Science Foundation of China(12372288)

Abstract

The future development of advanced high-performance aircraft not only raises an urgent demand for significant improvement in aerodynamic performance such as the lift-to-drag ratio and maximum lift coefficient, but also faces more stringent design constraints and requirements of various disciplines such as overall/structural/stealth/flight control. According to the overall top-level aircraft design and engineering applications, we conduct an unconventional blended-wing-body swallow tail aerodynamic layout design optimization and performance analysis based on the new blended-wing-body integration design idea of large effective volume stealth fuselage, high lift and large aspect ratio stealth natural laminar flow wing, and efficient simultaneous geometric and aerodynamic integration design of fuselage/wing, and rear body/swallow tail. The results of CFD calculation and the wind tunnel test show that at Mach number Ma=0.194, Reynolds number Re=5.2 ×105, the maximum lift-to-drag ratio is about 31.2, and the aerodynamic performance is excellent. Meanwhile, the basic longitudinal/transverse aerodynamic characteristics and swallow tail rudder effect can meet the flight control requirements. The transition infrared measurement test results show that the free transition position is in good agreement with the laminar airfoil/wing aerodynamic design theory. The surface flow separation wire test results show that the swallow tail is significantly affected by the wing downwash flow, with further research to be conducted in the future.

Cite this article

Liu LIU , Xianhong XIANG , Yufei ZHANG , Haixin CHEN , Chuang WEI , Jian ZHU , Pu YANG . A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629630 -629630 . DOI: 10.7527/S1000-6893.2023.29630

References

1 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997.
  FANG B R. Aerodynamic layout design of aircraft[M]. Beijing: Aviation Industry Press, 1997 (in Chinese).
2 崔尔杰, 白鹏, 杨基明. 智能变形飞行器的发展道路[J]. 航空制造技术200750(8): 38-41.
  CUI E J, BAI P, YANG J M. Development path of intelligent morphing aircraft[J]. Aeronautical Manufacturing Technology200750(8): 38-41 (in Chinese).
3 HILEMAN J, SPAKOVSZKY Z, DRELA M, et al. Airframe design for “silent aircraft”[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
4 XIANG X H, YUAN L, QIAN Z S. Investigation of a wide range adaptable hypersonic dual-waverider integrative design method based on two different types of 3D inward-turning inlets[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
5 张明辉, 陈真利, 顾文婷, 等. 翼身融合布局民机高低速协调设计[J]. 航空学报201940(9): 623052.
  ZHANG M H, CHEN Z L, GU W T, et al. Tradeoff design of high and low speed performance for blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(9): 623052 (in Chinese).
6 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报202041(1): 123176.
  FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(1): 123176 (in Chinese).
7 李沛峰, 张彬乾, 陶于金, 等. 翼身融合布局中央机体翼型设计研究[J]. 西北工业大学学报201836(2): 203-210.
  LI P F, ZHANG B Q, TAO Y J, et al. Center body airfoil design for blended wing body configuration[J]. Journal of Northwestern Polytechnical University201836(2): 203-210 (in Chinese).
8 蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报201637(1): 278-289.
  JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica201637(1): 278-289 (in Chinese).
9 邓海强, 余雄庆. 亚声速翼身融合无人机概念外形参数优化[J]. 航空学报201435(5): 1200-1208.
  DENG H Q, YU X Q. Configuration optimization of subsonic blended wing body UAV conceptual design[J]. Acta Aeronautica et Astronautica Sinica201435(5): 1200-1208 (in Chinese).
10 钟园, 陈勇, 陈真利, 等. 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报201940(9): 623050.
  ZHONG Y, CHEN Y, CHEN Z L, et al. Design of slat of blended-wing-body low speed testing aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(9): 623050 (in Chinese).
11 张明辉, 陈真利, 毛俊, 等. 翼身融合布局民机克鲁格襟翼设计[J]. 航空学报201940(9): 623048.
  ZHANG M H, CHEN Z L, MAO J, et al. Design of Krueger flap for civil aircraft with blended-wing-body[J]. Acta Aeronautica et Astronautica Sinica201940(9): 623048 (in Chinese).
12 夏明, 袁昌运, 巩文秀, 等. 鸭翼对BWB飞机低速纵向气动特性的影响[J]. 空气动力学学报202038(5): 1004-1010.
  XIA M, YUAN C Y, GONG W X, et al. Low-speed longitudinal aerodynamic influence of canard on BWB aircraft[J]. Acta Aerodynamica Sinica202038(5): 1004-1010 (in Chinese).
13 丛斌, 王立新. 飞翼布局飞机侧风起降特性[J]. 北京航空航天大学学报201743(5): 1023-1030.
  CONG B, WANG L X. Crosswind take-off and landing characteristics of flying wings[J]. Journal of Beijing University of Aeronautics and Astronautics201743(5): 1023-1030 (in Chinese).
14 张乐, 周洲, 许晓平. 隐身反设计下飞翼布局气动与隐身综合设计[J]. 哈尔滨工业大学学报201749(10): 22-30.
  ZHANG L, ZHOU Z, XU X P. Integrated design on aerodynamic and stealthy of flying wing unmanned aerial vehicle based on stealthy inverse design method[J]. Journal of Harbin Institute of Technology201749(10): 22-30 (in Chinese).
15 SARGEANT M A, HYNES T P, GRAHAM W R, et al. Stability of hybrid-wing-body-type aircraft with centerbody leading-edge carving[J]. Journal of Aircraft201047(3): 970-974.
16 HILEMAN J I, SPAKOVSZKY Z S, DRELA M, et al. Airframe design for silent fuel-efficient aircraft[J]. Journal of Aircraft201047(3): 956-969.
17 HILEMAN J, SPAKOVSZKY Z, DRELA M, et al. Aerodynamic and aeroacoustic three-dimensional design for a “silent” aircraft[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
18 向先宏,杨晓华,王海波,等 .未来高空长航时无人机典型工程气动问题浅析[C]∥中国航空学会无人机空气动力问题研讨会,2021.
  XIANG X H, YANG X H, WANG H B, et al. A brief discussion of aerodynamic research of high altitude long endurance future vehicle[C]∥The UAV Aerodynamics Conference of Chinese Society of Aeronautics and Astronautics, 2021.
19 向先宏, 刘柳, 李庆, 等. 一种翼身融合燕尾形尾翼气动布局及设计方法: CN115716526A[P]. 2023-02-28.
  XIANG X, LIU L, LI Q, et al. Aerodynamic layout and design method of wing body fused swallow-tail-shaped empennage: CN115716526A[P]. 2023-02-28 (in Chinese).
20 魏闯, 张铁军, 钱战森. 基于e N 转捩预测方法的增升装置失速特性数值模拟研究[J]. 航空科学技术201930(9): 33-39.
  WEI C, ZHANG T J, QIAN Z S. Number simulations on stall characteristic for high-lift configuration based on e N transition method[J]. Aeronautical Science & Technology201930(9): 33-39 (in Chinese).
21 LI H M, REN Y J, TANG H L, et al. Implementation of three different transition methods and comparative analysis of the results computed by OVERSET software[C]∥Proceedings of the 46th AIAA Fluid Dynamics Conference. Reston: AIAA, 2016.
22 MARCHMAN J F III, ABTAHI A. Aerodynamics of an aspect ratio 8 wing at low Reynolds numbers[J]. Journal of Aircraft198522(7): 628-634.
23 LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics201831(9): 1842-1854.
24 JI Q, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization of a high-lift system with adaptive dropped hinge flap[J]. Chinese Journal of Aeronautics202235(11): 191-208.
25 ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology201543: 152-164.
26 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002.
  FAN J C. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002 (in Chinese).
Outlines

/