ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method
Received date: 2023-09-18
Revised date: 2023-09-28
Accepted date: 2023-12-04
Online published: 2023-12-13
Supported by
Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Natural Science Foundation of China(12102345);Project of State Key Laboratory of Aerodynamics(SKLA-2022-KFKT-005)
Wide-speed-range hypersonic vehicle, as a new strategic high ground in the aerospace field, face the challenge of balancing subsonic aerodynamic performance with transonic and supersonic as well as hypersonic characteristics due to the maximization of their flight speed and altitude range. To alleviate the high and low speed aerodynamic design conflict, this paper combines a global optimization approach based on surrogate models with a local optimization approach based on adjoint gradients to perform a multi-objective stepwise optimization of the layout parameters and airfoil shapes of the wide-speed-range configuration, spanning from the global to the local scale. The results indicate that under the constraints on subsonic lift coefficient and hypersonic drag coefficient, the layout parameter optimization method based on surrogate models can enhance the subsonic lift-to-drag ratio by 9.5%, while maintaining hypersonic aerodynamic performance. Furthermore, by selecting the configuration on the Pareto front of layout parameter optimization results with the optimal subsonic aerodynamic characteristics, a gradient optimization of the wing profile is performed using an adjoint gradient-based method. The optimization results demonstrate that the gradient optimization effectively enhances the drag characteristics during subsonic and hypersonic cruising states, leading to the geometric optimization of the airfoil as a dual-S shape that balances subsonic and hypersonic aerodynamic characteristics. Through the aforementioned optimization from layout parameters to profile parameters, the subsonic lift-to-drag ratio of the waverider-wing configuration increased by 12.4% compared to the original configuration, while the hypersonic lift-to-drag ratio improved by 6.2% compared to the original configuration.
Shusheng CHEN , Cong FENG , Zhaokang ZHANG , Ke ZHAO , Xinyang ZHANG , Zhenghong GAO . Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629596 -629596 . DOI: 10.7527/S1000-6893.2023.29596
1 | 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13. |
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
2 | BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. |
3 | 刘瑜, 吕凡熹, 周进. XB-70飞行器折叠机翼总体性能分析[J]. 航空科学技术, 2022, 33(12): 47-53. |
LIU Y, LYU F X, ZHOU J. Overall performance analysis on XB-70 folding wingtip system[J]. Aeronautical Science & Technology, 2022, 33(12): 47-53 (in Chinese). | |
4 | MIXON B, CHUDOBA B. The lockheed SR-71 blackbird - A senior capstone re-engineering experience[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
5 | RODI P. Vortex lift waverider configurations[C]∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
6 | ZHAO Z T, HUANG W, YAN B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863. |
7 | 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824. |
LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese). | |
8 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
9 | 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报, 2023, 44(24): 128441. |
CHEN S S, ZHANG Z K, LI J P, et al. A wide-speed aerodynamic layout adopting waverider-delta wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese). | |
10 | 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报, 2021, 39(6): 111-127. |
ZHANG Y, HAN Z H, ZHOU Z, et al. Aerodynamic design optimization of wide-Mach-number-range airfoils for hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese). | |
11 | 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737. |
SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese). | |
12 | 刘超宇, 屈峰, 李杰奇, 等. 涡波一体乘波飞行器宽速域气动优化设计研究[J]. 力学学报, 2023, 55(1): 70-83. |
LIU C Y, QU F, LI J Q, et al. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83 (in Chinese). | |
13 | 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404. |
HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). | |
14 | OBARA C J, LAMAR J E. Overview of the cranked-arrow wing aerodynamics project international[J]. Journal of Aircraft, 2009, 46(2): 355-368. |
15 | 宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2018, 39(2): 121519. |
SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121519 (in Chinese). | |
16 | TINCHER D J, BURNETT D W. Hypersonic waverider test vehicle - A logical next step[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 392-399. |
17 | CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics, 2022, 456: 111027. |
18 | CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641. |
19 | MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[C]∥Proceedings of the Fluid Dynamics Conference. Reston: AIAA, 1994. |
20 | 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633. |
GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese). | |
21 | Г.С. 比施根斯.超声速飞机空气动力学和飞行力学[M]. 郭桢, 等, 译. 上海:上海交通大学出版社,2009. |
BUSHGENS G S. Aerodynamics and flight dynamics for supersonic aircraft[M]. GUO Z, et al, translated. Shanghai: Shanghai Jiao Tong University Press, 2009 (in Chinese). |
/
〈 |
|
〉 |