Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft

Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV

  • Chao AN ,
  • Guixi HUO ,
  • Yang MENG ,
  • Changchuan XIE ,
  • Chao YANG
Expand
  • School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China

Received date: 2023-09-14

  Revised date: 2023-09-28

  Accepted date: 2023-12-04

  Online published: 2023-12-13

Supported by

National Natural Science Foundation of China(12102027)

Abstract

The wingtip-hinged multi-body combined Unmanned Aerial Vehicle (UAV) represents a novel conceptual aircraft, comprising multiple individual unmanned aircraft interconnected through wingtip hinges and allowing for relative roll motion. It exhibits significant distinctions in layout parameters and flight dynamics characteristics compared to conventional aircraft, with the presence of aerodynamic coupling between individual unmanned aircraft. First, the state-space vortex lattice method is employed to derive the aerodynamic derivatives specific to this aircraft type. Then, utilizing the Newton-Euler equations, a flight dynamics model is established for trim calculation and stability analysis, elucidating its unstable compound motion flight modes dominated by relative roll motion. Lastly, an investigation is conducted on the influence of layout parameters on flight dynamics stability. The analysis shows that reducing the trim roll angle of individual unmanned aircraft and increasing the sweep angle can enhance flight stability, while an optimal distance between the wing and tail is found to improve flight stability. The research findings can provide guidance and reference for the design of wingtip-hinged multi-body combined UAVs.

Cite this article

Chao AN , Guixi HUO , Yang MENG , Changchuan XIE , Chao YANG . Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(6) : 629587 -629587 . DOI: 10.7527/S1000-6893.2023.29587

References

1 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报202041(S1): 723738.
  JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723738 (in Chinese).
2 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技201334(5): 37-43.
  NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology201334(5): 37-43 (in Chinese).
3 安朝. 大柔性飞行器结构建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2020: 12-15.
  AN C. Structure modeling methodology and aeroelastic analysis of large flexible aircraft[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2020: 12-15 (in Chinese).
4 PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft200037(5): 753-760.
5 PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft200138(1): 88-94.
6 ANDERSON C. Dangerous experiments: Wingtip coupling at 15000 Feet[J]. Flight Journal20005(6): 64-72.
7 WRIGHT-PATTERSON A F B. United States Air Force museum guidebook[M]. Ohio: Air Force Museum Foundation, 1975.
8 NEELY R H. Flutter tests of a 1/25-scale model of the B-36J/RF-84F tip-coupled airplane configuration in the Langley 19-foot pressure tunnel: NACA-RM-SL56A25B [R]. Washington, D.C.: Research Memorandum for the U.S. Air Force, 1956.
9 MAGILL S, DURHAM W. Modeling and simulation of wingtip-docked flight[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002.
10 MONTALVO C. Meta aircraft flight dynamics and controls[D]. Atlanta: Georgia Institute of Technology, 2014.
11 MONTALVO C, COSTELLO M. Meta aircraft flight dynamics[J]. Journal of Aircraft201552(1): 107-115.
12 TROUB B, MONTALVO C. Meta aircraft controllability[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016.
13 K?THE A, LUCKNER R. Flight mechanical modeling and analysis of multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2015: 1-12.
14 K?THE A, BEHRENS A, HAMANN A. Closed-loop flight tests with an unmanned experimental multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2017:1-15.
15 CRACAU D. The AlphaLink compound aircraft: Aviation outside the Box! [EB/OL]. (2020-10-19) [2020-12-28]. .
16 COOPER J R, ROTHHAAR P M. Dynamics and control of in-flight wingtip docking[J]. Journal of Guidance, Control, and Dynamics201841(11): 2327-2337.
17 AN C, XIE C C, MENG Y, et al. Flight mechanical analysis and test of unmanned multi-body aircraft[C]∥ International Forum on Aeroelasticity and Structural Dynamics. 2019:1-17.
18 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学202139(2): 1-9, 15.
  YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: Innovative, opportunities, and technical challenges[J]. Flight Dynamics202139(2): 1-9, 15 (in Chinese).
19 WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology2021108: 106404.
20 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报202243(9): 325946.
  ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica202243(9): 325946 (in Chinese).
21 杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报202344(8): 2245-2262.
  DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii202344(8): 2245-2262 (in Chinese).
22 杨澜. 大柔性机翼气动建模方法及气动弹性分析研究[D]. 北京: 北京航空航天大学, 2021: 38-40.
  YANG L. Aerodynamics modeling methodology and aeroelastic analysis of large flexible wing[D]. Beijing: Beihang University, 2021: 38-40 (in Chinese).
23 YANG L, XIE C C, YANG C. Geometrically exact vortex lattice and panel methods in static aeroelasticity of very flexible wing[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020234(3): 742-759.
24 WERTER N P M, DE BREUKER R, ABDALLA M M. Continuous-time state-space unsteady aerodynamic modeling for efficient loads analysis[J]. AIAA Journal201856(3): 905-916.
25 KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. New York: McGraw-Hill Inc, 1991.
26 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学202138(11): 248-256.
  AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics202138(11): 248-256 (in Chinese).
27 JONES J R. Development of a very flexible tested aircraft for the validation of nonlinear aeroelastic codes[D]. Ann Arbor: University of Michigan, 2017: 113-115.
28 ZONA Technology, Inc. ZONAIR user’s manual [M]. 6th ed. Scottsdale:ZONA Technology, Inc., 2010.
Outlines

/