Articles

Self⁃excited oscillation and stability of flow regulator pipeline system

  • Meng DONG ,
  • Lixiang XING ,
  • Haohai XU
Expand
  • 1.National Key Laboratory of Science and Technology on Liquid Rocket Engine,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China
    2.Academy of Aerospace Propulsion Technology,Xi’an 710100,China
E-mail: 360640173@qq.com

Received date: 2023-08-09

  Revised date: 2023-09-19

  Accepted date: 2023-12-04

  Online published: 2023-12-13

Supported by

Foundation of Key Laboratory of Science and Technology on Liquid Rocket Engine(6142704210102)

Abstract

The flow regulator pipeline system is an important module in LOX/kerosene engine. Through exploring the stability characteristics of the system, the direction for improving measures to reduce the amplitude of parameter oscillations is presented. Using nonlinear and small deviation linear methods, we reveal the mechanism of self-excited oscillation and obtain the bifurcation characteristics and stable boundaries of the system. Results show that the instability of the equilibrium point is a condition for the formation of self-excited oscillation, and the system gradually develops from a linear dominated divergent oscillation of 78.81 Hz to a nonlinear dominated constant amplitude oscillation of 70.01 Hz. As the pressure difference increases, the system undergoes Hopf supercritical bifurcation, and the stable region decreases accordingly. As the throttling area increases, the system exhibits Hopf subcritical bifurcation, and the stable region increases accordingly. Reducing the pipe length and increasing the pipe diameter both weaken the unstable amplitude conditions, which are beneficial for system stability. The damping hole of the regulator has little effect on the stable boundary, and reducing this aperture can significantly decrease the amplitude of self-excited oscillation. An increase in the height of the rectangular groove of the regulator can increase the stability region, resulting in complex stable boundary branches and bifurcation curve inflection points at heights of 4.5 mm and 2.5 mm, respectively. The stability of the system under the flow boundary depends on the difference of the static load curve. When working in the negative difference region, the system is unstable, and the stability region of the system at the flow boundary is larger than that at the pressure boundary.

Cite this article

Meng DONG , Lixiang XING , Haohai XU . Self⁃excited oscillation and stability of flow regulator pipeline system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529427 -529427 . DOI: 10.7527/S1000-6893.2023.29427

References

1 JUNG T. Static characteristics of a bellows-type flow regulator for the thrust control of a liquid rocket engine[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014228(11): 2036-2045.
2 SUTTON G P, BIBLARZ O. Rocket Propulsion Elements: 9th edition[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2016
3 董蒙, 谭永华, 邢理想, 等. 液体火箭发动机系统振荡及稳定性研究进展[J]. 航空动力学报202338(12): 2919-2936.
  DONG M, TAN Y H, XING L X, et al. Research progress on system oscillation and stability of liquid rocket engine[J]. Journal of Aerospace Power202338(12): 2919-2936 (in Chinese).
4 JUNG T. Static characteristics of a flow regulator for a liquid rocket engine[J]. Journal of Spacecraft and Rockets201148(3): 541-544.
5 王昕. 流量调节器动态特性研究[J]. 火箭推进200430(3): 19-24.
  WANG X. Study on dynamic characteristics of flow regulator[J]. Journal of Rocket Propulsion200430(3): 19-24 (in Chinese).
6 冯岳鹏. 氢氧补燃发动机变推力调节方案与调节过程研究[D]. 北京: 中国运载火箭技术研究院, 2021.
  FENG Y P. Research on variable thrust regulating scheme and process of staged combustion cycle LOX/LH2 engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2021 (in Chinese).
7 管杰, 何宏疆, 董万峰, 等. 流量调节器快速起调过程[J]. 火箭推进202248(5): 61-68.
  GUAN J, HE H J, DONG W F, et al. Rapid start-up process of liquid-flow regulator[J]. Journal of Rocket Propulsion202248(5): 61-68 (in Chinese).
8 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报202243(10): 527408.
  SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527408 (in Chinese).
9 LIU C H, JIANG H Z. A seventh-order model for dynamic response of an electro-hydraulic servo valve[J]. Chinese Journal of Aeronautics201427(6): 1605-1611.
10 YIN Y B, WANG D, LI W D, et al. Effect of the resonance suppression damping on the stability of a cartridge pilot-operated relief valve[J]. Journal of Fluids and Structures2023121: 103948.
11 FUNK J E. Poppet valve stability[J]. Journal of Basic Engineering196486(2): 207-212.
12 王剑中, 陈二锋, 余武江, 等. 气动阀门自激振动机理及动态稳定性[J]. 航空动力学报201429(6): 1490-1497.
  WANG J Z, CHEN E F, YU W J, et al. Mechanism of self-excited vibration and dynamic stability for pneumatic valves[J]. Journal of Aerospace Power201429(6): 1490-1497 (in Chinese).
13 刘上, 刘红军, 陈建华, 等. 流量调节器在泵压式供应系统中的动力学特性[J]. 火箭推进201440(2): 28-35.
  LIU S, LIU H J, CHEN J H, et al. Dynamical characteristics of flow regulator in pump feed system[J]. Journal of Rocket Propulsion201440(2): 28-35 (in Chinese).
14 刘上, 刘红军, 徐浩海, 等. 流量调节器-管路系统频率特性及稳定性[J]. 推进技术201233(4): 631-638.
  LIU S, LIU H J, XU H H, et al. Frequency characteristics and stability of the flow regulator-pipe system[J]. Journal of Propulsion Technology201233(4): 631-638 (in Chinese).
15 舍维科夫. 液体火箭发动机自动控制理论[M].张兴波,刘站国, 译. 西安: 中国航天科技集团公司第六研究院第十一研究所, 2002.
  SHEVIKOV. Automatic control theory of Liquid-propellant rocket [M]. ZHANG Xingbo, LIU Zhanguo, translated. Xi’an: The Eleventh Research Institute of the Sixth Research Institute of China Aerospace Science and Technology Corporation, 2002.
16 MISRA A S. Acoustic,Fluid-Structure and decoupled seismic analysis of piping systems[D]. Toronto: University of Toronto, 2003.
17 KADAR F, HOS C, STEPAN G. Delayed oscillator model of pressure relief valves with outlet piping[J]. Journal of Sound Vibration2022534: 117016.
18 BOUZIDI S EL, HASSAN M, ZIADA S. Acoustic methods to suppress self-excited oscillations in spring-loaded valves[J]. Journal of Fluids and Structures201985: 126-137.
19 SCHR?DERS S, FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics2021103(3): 2315-2327.
20 HAYASHI S, HAYASE T, KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures199711(6): 693-716.
21 HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Ser C, Dynamics, Control, Robotics, Design and Manufacturing199538(3): 357-366.
22 陈二锋, 丁建春, 武园浩, 等. 气动阀门颤振的局部稳定与全局稳定特性[J]. 航空动力学报201833(3): 663-670.
  CHEN E F, DING J C, WU Y H, et al. Local and global stability of pneumatic valves’ chatter[J]. Journal of Aerospace Power201833(3): 663-670 (in Chinese).
23 叶奇昉, 严诗杰, 陈江平, 等. 气动先导式电磁阀的自激振动[J]. 机械工程学报201046(1): 115-121.
  YE Q F, YAN S J, CHEN J P, et al. Self-excited vibration in a pneumatic pilot-operated solenoid valve[J]. Journal of Mechanical Engineering201046(1): 115-121 (in Chinese).
24 陈一丹, 陈宏玉. 液氧煤油发动机单向阀自激振荡特性[J]. 火箭推进202147(5): 35-41.
  CHEN Y D, CHEN H Y. Self-excited oscillation characteristics of check valve of LOX/kerosene engine[J]. Journal of Rocket Propulsion202147(5): 35-41 (in Chinese).
25 张淼, 徐浩海, 李斌, 等. 流量调节器管路系统自激振荡特性研究[J]. 推进技术202142(7): 1493-1500.
  ZHANG M, XU H H, LI B, et al. Auto oscillation of flow regulator pipe system[J]. Journal of Propulsion Technology202142(7): 1493-1500 (in Chinese).
Outlines

/