ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic interaction characteristics of coaxial rigid rotor⁃fuselage in hover condition
Received date: 2023-07-10
Revised date: 2023-10-20
Accepted date: 2023-12-01
Online published: 2023-12-07
Supported by
National Key Laboratory Foundation of Science and Technology on Rotorcraft Aeromechanics(61422200102)
Experimental and computation studies were conducted on the aerodynamic interaction between coaxial rigid rotor-fuselage in hover. The influence of fuselage aerodynamic interference in hover on the aerodynamic characteristics of coaxial rigid rotor and the pressure distribution on the fuselage surface was analyzed. It is found that the range of high lift areas at the tip of the upper and lower rotor blades is increased, and the power coefficient of the rotors is reduced at the same tension coefficient with the aerodynamic interaction of the fuselage. The rotor maximum Figure of Merit (FM) increases by approximately 4.6%. The fuselage generates vertical down-load, which is about 7% of the rotor pull force, with the influence of rotor downwash flow. Excluding vertical down-load on the fuselage, the maximum FM of the rotor is reduced by about 6% compared to isolated rotors. Under the aerodynamic interaction of rotor, the fuselage generates an upward force moment, which is proportional to the rotor tension coefficient. The surface pressure of the fuselage exhibits an unsteady variation of 4 times the rotational frequency.
Key words: coaxial rigid rotor; aerodynamic interaction; fuselage; wind tunnel test; hover
Pengpeng SUN , Ping’an LIU , Feng FAN , Wei ZENG . Aerodynamic interaction characteristics of coaxial rigid rotor⁃fuselage in hover condition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(9) : 529284 -529284 . DOI: 10.7527/S1000-6893.2023.29284
1 | 吴希明. 共轴刚性旋翼空气动力学问题与研究进展[J]. 南京航空航天大学学报, 2019, 51(2): 137-146. |
WU X M. Aerodynamic problems and research progresses of rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 137-146 (in Chinese). | |
2 | 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012, 23(3): 9-14. |
DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14 (in Chinese). | |
3 | 袁明川, 刘平安, 樊枫, 等. 共轴刚性旋翼气动干扰特性风洞试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 257-262. |
YUAN M C, LIU P A, FAN F, et al. Wind tunnel test investigation of coaxial rigid rotor aerodynamic interaction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 257-262 (in Chinese). | |
4 | ARENTS D N. An assessment of the hover performance of the XH-59A advancing blade concept demonstration helicopter:USAAMRDL-TN-25[R]. Fort Eustis: Army Air Mobility Research And Development Lab, 1977. |
5 | KIM H W, KENYON A R, DURAISAMY K, et al. Interactional aerodynamics and acoustics of a propeller-augmented compound coaxial helicopter[C]∥ American Helicopter Society Specialists Conference on Aeromechanics. San Francisco: University of Strathclyde, 2008:1-22. |
6 | KIM H W, KENYON A R, BROWN R E, et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal, 2009, 113(1140): 65-78. |
7 | 李文浩. 复合式高速直升机旋翼/机身气动干扰特性的CFD分析[D]. 南京: 南京航空航天大学, 2012. |
LI W H. Analysis on aerodynamic interactions of the compound high-speed helicopter rotor/fuselage based on CFD[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
8 | 张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京: 南京航空航天大学, 2014. |
ZHANG Y. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
9 | 胡健平,杨玉成,徐国华,等. 共轴刚性双旋翼直升机悬停旋翼机身干扰流场分析[J].第33届全国直升机年会论文集.景德镇: 中国航空学会直升机分会,2017, 2:29-33. |
Hu J P, YANG Y C, XU G H, et al. Analysis on rotor-fuselage interaction flowfield of helicopter with rigid coaxial rotor impact when hovering[C]∥ The 33th National Helicopter Annual Conference. Jingdezhen: CSAA-Helicopter Branch, 2017, 2:29-33 (in Chinese). | |
10 | 柳家齐, 陈荣钱, 程佳铭, 等. 共轴刚性双旋翼/机身干扰流场数值模拟[J]. 航空动力学报, 2019, 34(11): 2377-2386. |
LIU J Q, CHEN R Q, CHENG J M, et al. Numerical simulation of flow field under coaxial rigid rotor/fuselage interaction[J]. Journal of Aerospace Power, 2019, 34(11): 2377-2386 (in Chinese). | |
11 | PAGLINO V M, BENO E. Full-scale wind tunnel investigation of the advancing blade concept rotor system: USAAMRDL-TR-71-25 [R]. Fort Eustis: Applied Technology Laboratory, 1971. |
12 | LORBER P, LAW G, O'NEILL J, et al. Overview of S-97 RAIDER scale model tests[C]∥ The AHS 72 th Annual Forum. West Palm Beach: AHS, 2016:17-19. |
13 | DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics, 2019, 32(3): 568-576. |
14 | 邓彦敏, 陶然, 胡继忠. 共轴式直升机上下旋翼之间气动干扰的风洞实验研究[J]. 航空学报, 2003, 24(1): 10-14. |
DENG Y M, TAO R, HU J Z. Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 10-14 (in Chinese). | |
15 | 于世美, 邓彦敏. 共轴式双旋翼尾迹流场的水洞PIV测量[J]. 北京航空航天大学学报, 2007, 33(6): 635-639. |
YU S M, DENG Y M. PIV measurements in the wake of coaxial-rotor in water tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 635-639 (in Chinese). | |
16 | 江露生, 曹亚雄, 刘婷, 等. 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报, 2021, 47(12): 2484-2493. |
JIANG L S, CAO Y X, LIU T, et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2484-2493 (in Chinese). | |
17 | 黄明其, 王亮权, 何龙, 等. 共轴刚性旋翼高速直升机风洞试验研究综述[J]. 南京航空航天大学学报, 2021, 53(2): 216-225. |
HUANG M Q, WANG L Q, HE L, et al. Overview of wind tunnel test for coaxial rigid rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(2): 216-225 (in Chinese). | |
18 | 孙朋朋,刘婷,刘平安,等. 共轴刚性旋翼机身悬停状态气动干扰计算分析[J]. 直升机技术, 2023, 215:8-13. |
SUN P P, LIU T, LIU P A, et al. Numerical analysis of coaxial rigid rotor-fuselage aerodynamic interaction in hover[J]. Helicopter Technique, 2023, 215:8-13 (in Chinese). | |
19 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006. |
20 | MINECK R E, GORTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor: NASA-TM-2000-210286[R]. Washington, D.C.: NASA, 2000. |
21 | 樊枫. 直升机非定常干扰流场与声场的计算方法研究及应用[D].南京航空航天大学,2013:25-59. |
FAN F. Research on numerical methods for unsteady interaction flowfield and aerocoustics of helicopters and their applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2013:25-59 (in Chinese). |
/
〈 |
|
〉 |